Efecto de los prebióticos, probióticos y simbióticos sobre marcadores moleculares de inflamación en la obesidad
e202212090
Palabras clave:
Prebióticos, Probióticos, Inflamación, ObesidadResumen
FUNDAMENTOS // La obesidad es una enfermedad ampliamente distribuida en el mundo y resulta una de las principales causas de mortalidad. El uso de prebióticos y probióticos promete una alternativa en el tratamiento de la obesidad, a pesar de los efectos fisiológicos y bioquímicos encontrados, aunque no está aún esclarecido el mecanismo molecular. Por lo que, en la presente revisión, se analizaron artículos que sugerían la activación de vías relacionadas al metabolismo de grasas y azúcares, así como el impacto en los mecanismos antinflamatorios, como parte del mecanismo de acción de los prebióticos y probióticos, con la finalidad de conocer las posibles vías de acción por las cuales se puede obtener el efecto observado.
MÉTODOS // Fue realizada una búsqueda exhaustiva de artículos comprendidos en el periodo 2005-2021 relacionados con el efecto de los prebióticos y probióticos en la obesidad y las enfermedades tanto inflamatorias como metabólicas.
RESULTADOS // Fueron obtenidos un total de sesenta y tres artículos, los cuales fueron clasificados en: información básica de marcadores moleculares de obesidad; efecto de prebióticos y probióticos en la obesidad; artículos de relación efectos antinflamatorios y metabolismo de grasas observados en la obesidad y otras enfermedades inflamatorias. Se identificó un efecto sobre las citoquinas antinflamatorias y la modulación de los PPAR, con consecuente disminución de la inflamación y degradación de grasas.
CONCLUSIONES // El efecto de los prebióticos y probióticos en la obesidad se sugiere está ligado al mecanismo antinflamatorio que producen, lo que a su vez conlleva a un aumento en la expresión de genes relacionados con el metabolismo de grasas.
Descargas
Citas
Organización Mundial de la Salud. Sobrepeso y Obesidad. 2016. Nota descriptiva Nº 113. Disponible en: http://www.who.int/mediacentre/factsheets/fs311/es/
García D, Catellanos G, Cedeño R, Benet M, Ramírez I. Tejido Adiposo como glándula endócrina. Revista Finlay. 2011;1:2-20p. Disponible en: http://www.revfinlay.sld.cu/index.php/finlay/article/view/39/1209
Goyal R, Faizy A, Siddiqui S, Shingai M. Evaluation of TNF-α and IL-6 Levels in Obese and Non-obese Diabetics: Pre- and Postinsulin Effects. N Am J Med Sci. 2012; 4:180-184. doi: https://doi.org/10.4103/1947-2714.94944
Cox A, West N, Cripps A. Obesity, inflammation and the gut microbiota. Lancet Diabetes and Endocrinol. 2014;3:207-215. DOI: https://doi.org/10.1016/S2213-8587(14)70134-2
Wang T. TNF-alpha inhibition of adiponectin expression by targeting PPAR-gamma and C/EBP in adipocytes. Tesis de Maestría. Louisiana State University and Agricultural and Mechanical College. United States. 2009.
Stienstra R, Saudale F, Duval C, Keshtkar S, Groener J, van Rooijen N, Staels, B, Kersten S, Müller M. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology. 2010; 51: 511-522. DOI: https://doi.org/10.1002/hep.23337
Kersten S. Integrated physiology and systems biology of PPAR-α. Mol Metab. 2014; 3: 354-371. DOI: https://doi.org/10.1016/j.molmet.2014.02.002
Konig B, Koch A, Spielmann J, Hilgenfeld C, Stangl G, Eder K. Activation of PPARα lowers synthesis and concentration of cholesterol by reduction of nuclear SREBP-2. Biochem Pharmacol. 2007; 73:574-585. DOI: https://doi.org/10.1016/j.bcp.2006.10.027
Kapadia R, Yi J, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci. 2008; 1:1813-1826. DOI: https://doi.org/10.2741/2802
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nucl Recept Signal. 2010; 8:1-17. DOI: https://doi.org/10.1621/nrs.08004
Charles B, Doumatey A, Huang H, Zhou J, Chen G, Shriner D et al. The roles of IL-6, IL-10, and IL-1RA in obesity and insulin resistance in African-Americans. J Clin Endocrinol and Metab. 2011; 92: 2018-2022p. DOI: https://doi.org/10.1210/jc.2011-1497
León-Cabrera S, Arana-Lechuga Y, Esqueda-León E, Terán-Pérez G, González-Chavez A, Escobedo G et al. Reduced Systemic Levels of IL-10 Are Associated with the Severity of Obstructive Sleep Apnea and Insulin Resistance in Morbidly Obese Humans. Mediators Inflamm. 2015:493409. DOI: https://doi.org/10.1155/2015/493409
Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol. 2011 Nov;45 Suppl:S128-32. doi: https://doi.org/10.1097/MCG.0b013e31821f44c4
Turnbaugh P, Ley R, Mahowland M, Magrini V, Mardis, E, Gordon J. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2007; 444:1026-1031. https://doi.org/10.1038/nature05414
Ley R, Turnbaugh P, Klein S. Gordon J. Microbial Ecology: Human gut microbes associated with obesity. Nature. 2007; 444:1022-1023. DOI: https://doi.org/10.1038/4441022a
Turnbaugh P, Hamady M, Yatsunenko T, Cantarel B, Duncan A, Ley R et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457:480-484. DOI: https://doi.org/10.1038/nature07540
Wu G, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh A et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science. 2011; 334:105-108. DOI: https://doi.org/10.1126/science.1208344
Banks A, McAllister F, Camporez J, Zushin P, Jurczak M, Laznik-Bogoslavski D et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature. 2015; 517:391-395 DOI: https://doi.org/10.1038/nature13887
Muccioli G, Naslain D, Bäckhed F, Reigstad C, Lambert D, Delzenne N et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010; 6(392). DOI: https://doi.org/10.1038/msb.2010.46
Farías M, Silva C. Rozowski J. Microbiota Intestinal: Rol en Obesidad. Rev Chil Nutr. 2011. 38:228-233. DOI: https://doi.org/10.4067/S0717-75182011000200013
Meador B, Krzyszton C, Johnson R, Huey K. Effects of IL-10 and age on IL-6, IL-1beta, and TNF-alpha responses in mouse skeletal and cardiac muscle to an acute inflammatory insult. J Appl Physiol. 2008; 104:991-997. DOI: https://doi.org/10.1152/japplphysiol.01079.2007
Dasu M, Ramirez S, Isseroff R. Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci (Lond). 2012; 122:203-214. DOI: https://doi.org/10.1042/CS20110357
Souza C, Teiceira A, Biondo L, Silveira L, Calder S, Rosa J. Palmitoleic acid reduces the inflammation in LPS-stimulated macrophages by inhibition of NFκB, independently of PPARs. Clin Exp Pharmacol Phisiol. 2017; 44: 566-575 DOI: https://doi.org/10.1111/1440-1681.12736
Starus D, Glass C. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol. 2007; 28:551-558. DOI: https://doi.org/10.1016/j.it.2007.09.003
Zizzo G, Cohen P. The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization. J Inflamm (Lond). 2015; 12:1-16. DOI: https://doi.org/10.1186/s12950-015-0081-4
Blanquicett C, Bum-Yong K, Ritzenthaler J, Jones D, Hart C. Oxidative Stress Modulates PPARγ in Vascular Endothelial Cells. Free Radic Biol Med. 2010; 48:1618-1625 DOI: https://doi.org/10.1016/j.freeradbiomed.2010.03.007
Nagy Z, Czimmerer Z, Szanto A, Nagy L. Pro-inflammatory cytokines negatively regulate PPARγ mediated gene expression in both human and murine macrophages via multiple mechanisms. Immunobiology. 2013; 218:1336-1344 DOI: https://doi.org/10.1016/j.imbio.2013.06.011
Para el tratamiento integral del sobrepeso y la obesidad. NORMA Oficial Mexicana NOM-008-SSA3-2010. Diario Oficial de la Federación, 4 de agosto del 2010.
Bengmark S, Gil A. Bioecological and nutritional control of disease: prebiotics, probiotics and synbiotics. Nutr Hosp. 2006; 21:72-84.
Anggeraini AS, Massi MN, Hamid F, Ahmad A, As’ad S, Bukhari A. Effects of synbiotic supplement on body weight and fasting blood glucose levels in obesity: A randomized placebo-controlled trial. Ann Med Surg (Lond). 2021; 68:102548. DOI: https://doi.org/10.1016/j.amsu.2021.102548
Brighenti F. Dietary fructans and serum triacylglycerols: a meta-analysis of randomized controlled trials. J Nutr. 2007; 137:2552-2556. DOI: https://doi.org/10.1093/jn/137.11.2552S
Dahinya D, Puniya M, Shandilya U, Dhewa T, Kumar N, Kumar S et al. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front Microbiol. 2017; 8:563. DOI: https://doi.org/10.3389/fmicb.2017.00563
Alard J, Lehrter V, Rhimi M, Mangin I, Peucelle V, Abraham A et al. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ Microbiol. 2016; 18:1484–1497. DOI: https://doi.org/10.1111/1462-2920.13181
Den Besten G, van Eunen K, Groen A, Venema K, Reijngoud D, Bakker B. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013; 54:2325-2340. DOI: https://doi.org/10.1194/jlr.R036012
Romeo J, Nova E, Warnberg J, Gómez S, Díaz L, Marcos A. Immunomodulatory effect of fibres, probiotics and synbiotics in different life-stages. Nutr Hosp. 2010; 25:341-349.
Rather S, Pothuraju R, Sharma R, De S, Mir N, Jangra S. Anti-obesity effect of feeding probiotic dahi containing Lactobacillus casei NCDC 19 in high fat diet-induced obese mice. Int. J. Dairy Technol. 2014; 67:504–509. DOI: https://doi.org/10.1111/1471-0307.12154
Kim K, Jeong J, Kim D. Lactobacillus brevis OK56 ameliorates high-fat diet-induced obesity in mice by inhibiting NF-kB activation and gut microbial LPS production. J Funct Foods. 2015; 13:183–191. DOI: https://doi.org/10.1016/j.jff.2014.12.045
Park S, Ji Y, Jung H, Park H, Kang J, Choi S et al. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl Microbiol Biotechnol. 2017; 101:1605–1614. DOI: https://doi.org/10.1007/s00253-016-7953-2
Chichlowski M, De Lartigue G, German J, Raybould E, Mills A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatric Gastroenterol Nutr. 2012; 55:321-327. DOI: https://doi.org/10.1097/MPG.0b013e31824fb899
Suarez J. Microbiota autóctona, probióticos y prebióticos. Nutr Hosp. 2013; 28:38-41.
Yoda K, Sun X, Kawase M, Kubota A, Miyazawa K, Harata G et al. A combination of probiotics and whey proteins enhances anti-obesity effects of calcium and dairy products during nutritional energy restriction in aP2-agouti transgenic mice. Br J Nutr. 2015; 113:1689-1696. DOI: https://doi.org/10.1017/S0007114515000914
Mencarelli A, Distruitti E, Renga B, D’Amore C, Cipriani S, Palladino G et al. Probiotics Modulate Intestinal Expression of Nuclear Receptor and Provide Counter-Regulatory Signals to Inflammation-Driven Adipose Tissue Activation. Plos One. 2011; 6(7). DOI: https://doi.org/10.1371/journal.pone.0022978
Eun C, Han D, Lee S, Jeon Y, Sohn J, Kim Y et al. Probiotics may reduce inflammation by enhancing peroxisome proliferator activated receptor gamma activation in HT-29 cells. Korean J Gastroenterol. 2007; 49(3). 139-146.
Bubnov R, Babenko L, Lazarenko L, Mokrozub V, Demchenko O, Nechypurenko O et al. Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. The EMPA J. 2017; 8:357-376. DOI: https://doi.org/10.1007/s13167-017-0117-3
Li Z, Jin H, Oh S, Ji G. Anti-obese effects of two Lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochem Biophys Res Commun. 2016; 480:222-227. DOI: https://doi.org/10.1016/j.bbrc.2016.10.031
Kang J, Yun S, Park M, Park J, Jeong S, Park H. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One. 2013; 8(1). doi: https://doi.org/10.1371/journal.pone.0054617
Daniali M, Nikfar S, Abdollahi M. A brief overview on the use of probiotics to treat overweight and obese patients. Expert Rev Endocrinol Metab, 2020; 15, 1-4. DOI: https://doi.org/10.1080/17446651.2020.1719068
Walsh CJ, Healy S, O’Toole PW, Murphy EF, Cotter PD. The probiotic L. casei LC-XCALTM improves metabolic health in a diet-induced obesity mouse model without altering the microbiome. Gut Microbes, 2020; 12(1):1-17. DOI: https://doi.org/10.1080/19490976.2020.1747330
Chiou WC, Chang BH, Tien HH, Cai YL, Fan YC, Chen WJ et al. Synbiotic intervention with an adlay-based prebiotic and probiotics improved diet-induced metabolic disturbance in mice by modulation of the gut microbiota. Nutrients, 2021; 13:3161. DOI: https://doi.org/10.3390/nu13093161
Narala V, Adapala R, Suresh M, Brock T, Peters-Golden M, Reddy R. Leukotriene B4 is a physiologically relevant endogenous peroxisome proliferator-activated receptor-alpha agonist. J Biol Chem. 2010; 285:22067-22074. DOI: https://doi.org/10.1074/jbc.M109.085118
Poulsen L, Serisbaek M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin in Cell Dev Biol. 2012; 23: 631-639. DOI: https://doi.org/10.1016/j.semcdb.2012.01.003
Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P et al. PPAR-α blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proc of Natl Acad Sci USA. 2009; 106(18). 7397-7402. DOI: https://doi.org/10.1073/pnas.0806742106
Becker J, Delayre-Orthez C, Frossard N, Pons F. Regulation of peroxisome proliferator-activated receptor-alpha expression during lung inflammation. Pulm Pharmacol Ther. 2008; 21(2). 324-330. DOI: https://doi.org/10.1016/j.pupt.2007.08.001
Hecker M, Behnk A, Morty R, Sommer N, Vadász I, Herold S et al. PPAR-α activation reduced LPS-induced inflammation in alveolar epithelial cells. Exp Lung Res. 2015; 41:393-403. DOI: https://doi.org/10.3109/01902148.2015.1046200
Shiomi Y, Yamauchi T, Iwabu M, Okada-Iwabu M, Nakayama R, Orikawa Y et al. A Novel Peroxisome Proliferator-activated Receptor (PPAR)α Agonist and PPARγ Antagonist, Z-551, Ameliorates High-fat Diet-induced Obesity and Metabolic Disorders in Mice. J Biol Chem. 2015; 290:14567-14581. doi: https://doi.org/10.1074/jbc.M114.622191
Huang W, Glass C. Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arterioscler, Thromb Vasc Biol. 2010; 30:1542-1549. DOI: https://doi.org/10.1161/ATVBAHA.109.191189
Chandra M, Sumitra M, Panchatcharam M. PPARγ and Its Role in Cardiovascular Diseases. PPAR Research. 2017. 1-10p. doi: https://doi.org/10.1155/2017/6404638
Ketsawatsomkron P, Sigmund C. Molecular mechanisms regulating vascular tone by peroxisome proliferator activated receptor gamma. Curr Opin Nephrol Hypertens. 2015; 24:123-130. DOI: https://doi.org/10.1097/MNH.0000000000000103
Kim S, Lee K, Park H, Park S. Min K, Jin S et al. Involvement of IL-10 in Peroxisome Proliferator Activated Receptor gamma Mediated Antiinflamatory response in Asthma. Mol Pharmacol. 2005; 68:1568-1575. DOI: https://doi.org/10.1124/mol.105.017160
Hong E, Ko H, Cho Y, Kim H, Ma Z, Yu T et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes. 2009; 58:2525-2535. doi: https://doi.org/10.2337/db08-1261
Klen J, Dolžan V. Glucagon-like Peptide-1 Receptor Agonists in the Management of Type 2 Diabetes Mellitus and Obesity: The Impact of Pharmacological Properties and Genetic Factors. Int J Mol Sci. 2022; 23:3451. doi: https://doi.org/10.3390/ijms23073451
Zhao L, Chen Y, Xia F, Abudukerimu B, Zhang W, Guo Y et al. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota. Front Endocrinol (Lausanne) 2018;9. doi: https://doi.org/10.3389/fendo.2018.00233
Tsai C-Y, Lu H-C, Chou Y-H, Liu P-Y, Chen H-Y, Huang M-C et al. Gut Microbial Signatures for Glycemic Responses of GLP-1 Receptor Agonists in Type 2 Diabetic Patients: A Pilot Study. Front Endocrinol (Lausanne) 2022;12. doi: https://doi.org/10.3389/fendo.2021.814770
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2022 Brian Eduardo Rangel-Torres, Alejandra Rodríguez-Tadeo, Isui Abril García-Montoya, Florinda Jiménez-Vega
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato.
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia.
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Avisos:
No tiene que cumplir con la licencia para elementos del material en el dominio público o cuando su uso esté permitido por una excepción o limitación aplicable.
No se dan garantías. La licencia podría no darle todos los permisos que necesita para el uso que tenga previsto. Por ejemplo, otros derechos como publicidad, privacidad, o derechos morales pueden limitar la forma en que utilice el material.