Análisis de las estrategias de vacunación frente a la COVID-19 en España y las bases científicas sobre las que se han sustentado (mayo 2022)

e202209066

Autores/as

  • José Antonio Navarro Alonso Consultor Honorario Permanente de la Dirección General de Salud Pública, Ministerio de Sanidad. Madrid. España.
  • Aurora Limia Sánchez Área de Programas de Vacunación, Dirección General de Salud Pública, Ministerio de Sanidad. Madrid. España.

Palabras clave:

Vacunación COVID-19, Intervalos vacunación COVID-19, Inmunidad híbrida, Dosis de recuerdo COVID-19.

Resumen

Una vez transcurrido alrededor de un año y medio (en el momento de escribir estas líneas) desde el inicio de la campaña masiva de vacunación en la que, gracias a las altas coberturas alcanzadas en todos los grupos diana para vacunación, se ha conseguido reducir de manera muy significativa la morbimortalidad por la COVID-19, es importante revisar las bases científicas que han sustentado las recomendaciones implantadas hasta la fecha y aquellas que podrían adoptarse en un futuro próximo según la situación epidemiológica.

El objetivo del presente artículo fue, por tanto, abordar los fundamentos de algunas de las decisiones técnicas propuestas desde la Ponencia de Programa y Registro de Vacunaciones y el Grupo de Trabajo Técnico de Vacunación frente a la COVID-19. A lo largo de once actualizaciones de la Estrategia de Vacunación frente a la COVID-19 en España, han sido objeto de intenso debate varias cuestiones relativas a los intervalos de vacunación entre dosis, la conveniencia del uso de diferentes tipos de vacunas, las combinaciones de las mismas, los beneficios de la inmunidad híbrida y el uso de una cuarta dosis (segunda dosis de recuerdo) para poblaciones seleccionadas. Todo ello sin olvidar aspectos esenciales de su seguridad.

Este artículo se divide en los siguientes apartados: Intervalos de vacunación; Pauta heteróloga o mixta; Inmunidad híbrida (vacunación tras la infección e infección tras vacunación [breakthrough]); Segunda dosis de recuerdo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Martínez D, Eong Ooi E. A potential silver lining of delaying the second dose. Nat Immunol 2022;23:349-351.

Amirthalingam G, López Bernal J, Andrews N et al. Serological responses and vaccine effectiveness for extended COVID-19 vaccine schedules in England. Nat Commun 2021.

Voysey M, Clemens S, Madhi Sh et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 2021;397:881-891.

Hall V, Ferreira V, Wood H et al. Delayed-interval BNT162b2 mRNA COVID-19 vaccination enhances humoral immunity and induces robust T cell responses. Nat Immunol 2022;23:380-385.

Grunau B, Asamoah-Boaheng M, Lavoie P et al. A Higher antibody response is generated with a 6- to 7-week (vs standard) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine dosing interval. Clin Infect Dis 2021 online PREPRINT. doi: https://www.doi.org/10.1093/cid/ciab93

Payne R, Longet S, Austin J et al. Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell 2021;184:5699-5714.

Chatterjee D, Tauzin A, Marchitto L et al. SARS-CoV-2 Omicron Spike recognition by plasma from individuals receiving BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Reports 2022;38:110429.

Tunis M, Warshawsky B, Ogunnaike-Cooke S. Canadian experience and evidence with COVID-19 vaccine primary series extended intervals. ACIP Meeting Minutes. 4 de febrero de 2022. Disponible en: https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2022-02-04/09-COVID-Tunis-508.pdf

Skowronski D, Setayeshgar S, Febriani Y et al. Two-dose SARS-CoV-2 vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec, Canada. medRxiv PREPRINT. doi: https://doi.org/10.1101/2021.10.26.21265397

El Adam S, Zou M, Kim S et al. SARS-CoV-2 mRNA vaccine effectiveness in healthcare workers by dosing interval and time since vaccination: test negative design, British Columbia, Canada. Open Forum Infect Dis. Publicado online 15 de abril 2022. Disponible en: https://academic-oup-com.eres.qnl.qa/ofid/advance-article/doi/10.1093/ofid/ofac178/6569147

Pollard A. How the Oxford-AstraZeneca covid-19 vaccine was made. Br Med J 2021;372:n86.

Rodrigues Ch, Plotkin S. The influence of interval between doses on response to vaccines. Vaccine 2021;39:7123-7127.

Flaxman A. Marchevsky N, Jenkin D et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). The Lancet 2021;398:981-990.

Deming M, Lyke K. A ‘mix and match’ approach to SARS-CoV-2 vaccination. Nat Medicine 2021;27:1510-1511.

Borobia A, Cracas A, Pérez-Olmeda M et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. The Lancet 2021;398:121-130.

Hermosilla E, Coma E, Xie J et al. Comparative effectiveness and safety of homologous two-dose ChAdOx1 versus heterologous vaccination with ChAdOx1 and BNT162b2. Nat Commun 2022;13:1369.

Stuart A, Shaw R, Liu X et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. The Lancet 2022;399:36-49.

Parker E, Desai Sh, Marti M et al. Emerging evidence on heterologous COVID-19 vaccine schedules-To mix or not to mix? The Lancet 2022;22:438-440.

World Health Organization. Interim recommendations for heterologous COVID-19 vaccine schedules. Interim guidance. 16 de diciembre de 2021. Disponible en: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE-recommendation-heterologous-schedules

Sablerolles R, Rietdijk W, Goorhuis A et al. Immunogenicity and Reactogenicity of Vaccine Boosters after Ad26.COV2.S Priming. N Eng J Med 2022;386:951-963.

Sester M, Klemis V, Venhorst A et al. Immunogenicity and reactogenicity of heterologous. Ad26.COV.2 and BNT162b2 vaccination. Research Square DOI: https://doi.org/10.21203/rs.3.rs-1056375/v1

Huat N, Lim J, Gill Un et al. Differential immunogenicity of homologous versus heterologous boost in Ad26.COV2.S vaccine recipients. Med (NY). 2022;3: 104–118.

Skowronski D, Setayeshgar S, Febriani Y et al. Two-dose SARS-CoV-2 vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec, Canada. medRxiv PREPRINT. doi: https://doi.org/10.1101/2021.10.26.21265397

Martinez-Baz I, Trobajo-Sanmartin C, Miqueleiz A et al. Product-specific COVID-19 vaccine effectiveness against secondary infection in close contacts, Navarre, Spain, April to August 2021. Euro Surveill. 2021;26(39): pii=2100894.

Starrfelt J, Buanes E, Juvet L et al. Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalisation among adults in Norway: a national cohort study, January-September 2021. medRxiv PREPRINT. https://doi.org/10.1101/2021.11.12.21266222

Gram M, Nielsen J, Schelde A et al. Vaccine effectiveness when combining the ChAdOx1 vaccine as the first dose with an mRNA COVID-19 vaccine as the second dose. medRxiv PREPRINT. https://doi.org/10.1101/2021.07.26.21261130

Pozzeto B, Legros V, Djebali S et al. Immunogenicity and efficacy of heterologous ChadOx1/BNT162b2 vaccination. Nature 2021;600:701-706.

Nordstrom P, Ballin M, Nordstrom A. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic Covid-19 infection in Sweden: A nationwide cohort study. The Lancet Regional Health-Europe 2021;11:100249.

Munro A, Janani L, Cornelius V et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. The Lancet 2021;398:2258-2276.

Atmar R, Lyke K, Jackson L et al. Homologous and heterologous Covid-19 booster vaccinations. New Eng J Med 2022;386:1946-1057.

World Health Organization. Evidence assessment: NVX-CoV2373 COVID-19 vaccine. Meeting of the Strategic Advisory Group of Experts on Immunization. 16 de diciembre de 2021. Disponible en: https://cdn.who.int/media/docs/default-source/immunization/sage/2021/december/nvx-evidence-assessment-sage-17-dec-2021.pdf?sfvrsn=2e4fade1_5

Liu X, Munro A, Feng Sh et al. Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: three months analyses of the COV-BOOST trial. J Infect. 2022. Disponible en: https://doi.org/10.1016/j.jinf.2022.04.018

Lyke K, Atmar R, Domínguez Islas C et al. SARS-CoV-2 omicron neutralization after heterologous vaccine boosting. medRxiv PREPRINT. doi: https://doi.org/10.1101/2022.01.13.22268861

Iketani S, Liu L, Nair M et al. A third COVID-19 vaccine 1 shot markedly boosts neutralizing antibody potency and breadth. medRxiv PREPRINT. doi: https://doi.org/10.1101/2021.08.11.21261670

Tan C, Collier Ai, Liu J et al. Ad26.COV2.S or BNT162b2 Boosting of BNT162b2 Vaccinated Individuals. medRxiv PREPRINT. doi: https://doi.org/10.1101/2021.12.02.21267198

Chalkias S, Eder F, Essink B et al. Safety, Immunogenicity and Antibody Persistence of a Bivalent Beta-Containing Booster Vaccine. Research Square. Disponible en: https://assets.researchsquare.com/files/rs-1555201/v1_covered.pdf?c=1650045900

Anderson E, Jackson L, Rouphael N et al. Reactogenicity, Safety, and Serological and Cellular Immunogenicity of a Booster Dose of SARS-CoV-2 mRNA Prototype, Variant, and Bivalent Vaccines. Research Square. Disponible en: https://www.researchsquare.com/article/rs-1594631/v1

Andrews N, Stowe J, Kirsebom F et al. Effectiveness of COVID-19 booster vaccines against covid-19 related symptoms, hospitalisation and death in England. Nat Medicine 2022;28:831-837.

Andrews N, Kirsebom F, Toffa S et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Eng J Med 2022;386:1532-1546.

Menni C, May A, Polidori L et al. COVID-19 vaccine waning and effectiveness and side-effects of boosters: a prospective community study from the ZOE COVID Study. Lancet Infect Dis. Publicado online 8 de abril de 2022. Disponible en: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00146-3/fulltext

Monge S, Rojas-Benedicto A, Olmedo C et al. The effectiveness of mRNA vaccine boosters for laboratory-confirmed COVID-19 during a period of predominance of the Omicron variant of SARS-CoV-2. PREPRINT en The Lancet. Anunciado 15 de febrero de 2022. Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4035396

Natarajan K, Prasad N, Dascomb K et al. Effectiveness of homologous and heterologous COVI-19m booster doses Following 1 Ad.26.COV2.S (Janssen [Johnson & Johnson]) Vaccine Dose Against COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults-VISION Network, 10 States, December 2021–March 2022. MMWR 2022;71:495-502.

Link-Gelles R. COVID-19 vaccine effectiveness in children and adults. VRBPAC meeting. 6 de abril de 2022. Disponible en: https://www.fda.gov/media/157475/download

Link-Gelles R. COVID-19 vaccine effectiveness during Omicron. ACIP Meeting Minutes. 20 de abril de 2022. Disponible en: https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2022-04-20/02-COVID-Link-Gelles-508.pdf

Crotty Sh. Hybrid immunity. Science 2021;372:1392-1393.

Stamatos L, Czartoski J, Wan Y et al. mRNA vaccination boosts cross-variant neutralizingantibodies elicited by SARS-CoV-2 infection. Science 2021;372:1413-1418.

Reynolds C, Pade C, Gibbons J et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science 2021;372:1418-1423.

Walls A, Sprouse K, Bowen J et al. SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses. Cell 2022;185:872-880.

Bates T, McBride S, Leier H et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci Immunol 2022;7:eabn8014.

Mantus G, Nyhoff L, Viswanadh Edara V et al. Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination. Cell Report Medicine 2022;3:100603.

Gruell H, Vansylla K, Tober-Lau P et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Medicine 2022;28:477-480.

Planas D, Saunders N, Maes P et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022;602:671-675.

Carreño JM, Alshammary H, Tcheou J et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 2022;602:682-690.

Curlin M, Bates T, Guzmán C et al. Omicron neutralizing antibody response following booster vaccination compared with breakthrough infection. medRxiv PREPRINT. doi: https://doi.org/10.1101/2022.04.11.22273694

Richardson S, Madzorera V, Spencer H et al. SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in previously vaccinated, but not unvaccinated individuals. Cell Host Microbe. Disponible online 25 de marzo de 2022. Disponible en: https://doi.org/10.1016/j.chom.2022.03.029

Lechmere T, Snell L, Graham C et al. Broad Neutralization of SARS-CoV-2 Variants, Including Omicron, following Breakthrough Infection with Delta in COVID-19-Vaccinated Individuals. mBio 2022;13:1-10.

Khan K, Karim F, Ganga Y et al. Omicron sub-lineages BA.4/BA.5 escape BA.1 infection elicited neutralizing immunity. medRxiv PREPRINT. doi: https://doi.org/10.1101/2022.04.29.22274477

Cheng S, Pun Mok Ch, Chan K et al. SARS-CoV-2 Omicron variant BA.2 neutralisation in sera of people with Comirnaty or CoronaVac vaccination, infection or breakthrough infection, Hong Kong, 2020 to 2022. Euro Surveill. 2022;27(18): pii=2200178.

Plumb I, Feldstein L, Barkley E et al. Effectiveness of COVID-19 mRNA Vaccination in Preventing COVID-19-Associated Hospitalization Among Adults with Previous SARS-CoV-2 Infection-United States, June 2021-February 2022. MMWR 2022;71:549-555.

Hammerman A, Sergienko R, Friger M et al. Effectiveness of the BNT162b2 Vaccine after Recovery from COVID-19. N Eng J Med 2022;386:1221-1229.

Munro A, Feng S, Janani L et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial. Lancet Infect Dis. Publicado online 9 de mayo de 2022. Disponible en: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00271-7/fulltext

Regev-Yochay G, Gonen T et al. Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. N Eng J Med 2022;386:1377-1380.

Gazit S, Saciuck Y, Perez G et al. Relative Effectiveness of Four Doses Compared to Three Dose of the BNT162b2 Vaccine in Israel. medRxiv PREPRINT. doi: https://doi.org/10.1101/2022.03.24.22272835

Arbel R, Sergienko R, Friger M et al. Effectiveness of a second BNT162b2 booster vaccine against hospitalization and death from COVID-19 in adults aged over 60 years. Nat Medicine. Publicado online 25 de abril de 2022. Disponible en: https://www.nature.com/articles/s41591-022-01832-0

Bar-On Y, Goldberg Y, Mandel M et al. Protection by a Fourth Dose of BNT162b2 against Omicron in Israel. N Eng J Med 2022;386:1712-1720.

Magen O, Waxman J, Makov-Assif et al. Fourth Dose of BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Eng J Med 2022;386:1603-1614.

Grewal R, Kitchen S, Nguyen L et al. Effectiveness of a Fourth Dose of COVID-19 Vaccine among Long-Term Care Residents in Ontario, Canada. medRxiv PREPRINT. doi: https://doi.org/10.1101/2022.04.15.22273846

Brosh-Nissimov T, Hussein K, Wiener-Well Y et al. Hospitalized patients with severe COVID-19 during the Omicron wave in Israel - benefits of a fourth vaccine dose. medRxiv PREPRINT. doi: https://doi.org/10.1101/2022.04.24.22274237

Descargas

Publicado

07-09-2022

Cómo citar

1.
Navarro Alonso JA, Limia Sánchez A. Análisis de las estrategias de vacunación frente a la COVID-19 en España y las bases científicas sobre las que se han sustentado (mayo 2022): e202209066. Rev Esp Salud Pública [Internet]. 7 de septiembre de 2022 [citado 25 de mayo de 2024];96:30 páginas. Disponible en: https://ojs.sanidad.gob.es/index.php/resp/article/view/267

Número

Sección

Colaboraciones especiales

Categorías

Artículos más leídos del mismo autor/a