Systematic review on the use of fish for vector control of mosquito-borne diseases

e202506028

Authors

  • Silvia Tortosa La Osa Improving Economies for Stronger Communities (IESC). Santo Domingo. República Dominicana. / Doctorado Interuniversitario en Ciencias de la Salud; Universidad de Sevilla. Sevilla. España. https://orcid.org/0000-0002-4559-3095
  • Maria Victoria Esteo Alcalá Máster en Salud Pública Veterinaria; Universidad de Córdoba. Córdoba. España. https://orcid.org/0009-0001-0410-7775
  • Eva Martín Ruiz Departamento de Enfermería; Facultad de Enfermería, Fisioterapia y Podología; Universidad de Sevilla. Sevilla. España. / Escuela Andaluza de Salud Pública. Granada. España. https://orcid.org/0000-0003-1509-1198
  • Antonio Olry de Labry-Lima Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública; Instituto de Salud Carlos III. Madrid. España. / Centro Andaluz de Documentación e Información de Medicamentos (CADIME). Granada. España. / Instituto de Investigación Biosanitaria; Hospital Universitario de Granada. Granada. España. https://orcid.org/0000-0001-5448-1370

Keywords:

Mosquito Control, Fish, Larva, Mosquito-Borne Diseases, Anopheles, Aedes, Culex

Abstract

BACKGROUND // It is estimated that more that 80% of world´s population live in areas at risk from at least one major vector-borne disease, being mosquitoes responsible for a significant disease burden. Given that biological control is a more natural option compared to other available interventions and that the use of fish is widespread, the aim of this review was to analyze the effectiveness of fish-based interventions to control mosquito-borne diseases.

METHODS // A bibliographic search was conducted through PubMed, Embase, Cochrane, LILACS, WOS-Core Collection and CAB Abstracts for observational or experimental studies published in English, Spanish, or Portuguese up to December 2023. The outcome variables of interest were entomological and epidemiological indicators.

RESULTS // Of the 2,227 references identified, seven articles were ultimately included. All studies measured the impact using entomological indicators, while only two also used epidemiological indicators. The interventions involved the release of fish into domestic water containers, rice fields, and excavations or wells linked to a canal construction. All studies observed a significant reduction in both entomological and epidemiological indicators. The larval reduction ranged between 80% and 100%, while the reduction in clinical cases reached 99.87%.

CONCLUSIONS // The release of fish leads to a meaningful reduction in both larval indicators and clinical cases. However, it is necessary to assess whether large-scale fish releases are feasible, sustainable, cost-effective, and sufficient to achieve vector control, as well as to consider the potential negative impact of their introduction into a given ecosystem.

Downloads

Download data is not yet available.

References

World Health Organization, UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. Global vector control response 2017-2030. Geneva: World Health Organization; 2017 [consultado 22 oct 2024]. Disponible en: https://iris.who.int/handle/10665/259205

World Health Organization. Vector-borne diseases [Internet]. World Health Organization; 2024 Sep 26 [consultado 1 nov 2024]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases

Azari-Hamidian S, Norouzi B, Harbach RE. A detailed review of the mosquitoes (Diptera: Culicidae) of Iran and their medical and veterinary importance. Acta Trop. 2019;194:106-122. doi: https://dx.doi.org/10.1016/j.actatropica.2019.03.019

World Health Organization. Lymphatic filariasis [Internet]. World Health Organization; 2024 Nov 21 [consultado 12 abr 2025]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis

World Health Organization. Fiebre amarilla [Internet]. World Health Organization; 2023 May 31 [consultado 12 abr 2025]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/yellow-fever

World Health Organization. Malaria [Internet]. World Health Organization; 2024 Dec 11 [consultado 12 abr 2025]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/malaria

Haider N, Hasan MN, Onyango J, Asaduzzaman M. Global landmark: 2023 marks the worst year for dengue cases with millions infected and thousands of deaths reported. IJID Reg. 2024;13:100459. doi: https://dx.doi.org/10.1016/j.ijregi.2024.100459

Kraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4(5):854-863. doi: https://dx.doi.org/10.1038/s41564-019-0376-y

Brugueras S, Fernández-Martínez B, Martínez-de La Puente J, Figuerola J, Porro TM, Rius C et al. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. Environ Res. 2020;191:110038. doi: https://dx.doi.org/10.1016/j.envres.2020.110038

World Health Organization. Vaccines and immunization: Dengue [Internet]. World Health Organization; 2025 April 10 [consultado 12 abr 2025]. Disponible en: https://www.who.int/news-room/questions-and-answers/item/dengue-vaccines

Schwartz E. Prophylaxis of Malaria. Mediterr J Hematol Infect Dis. 2012;e2012045. doi: https://dx.doi.org/10.4084/MJHID.2012.45

Organización Panamericana de la Salud. Documento técnico para la implementación de intervenciones basado en escenarios operativos genéricos para el control del Aedes aegypti. Washington, D.C.: Organización Panamericana de la Salud; 2019. [consultado 2 nov 2024]. Disponible en: https://iris.paho.org/handle/10665.2/51654

Gómez-Vargas W, Zapata-Úsuga GE. Vector Control Strategies. En: Puerta-Guardo H, Manrique-Saide P, editores. Mosquito Research-Recent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies. IntechOpen; 2023. p. 1-27. doi: https://dx.doi.org/10.5772/intechopen.105026

Vazquez-Prokopec GM, Medina-Barreiro A, Che-Mendoza A, Dzul-Manzanilla F, Correa-Morales F, Guillermo-May G et al. Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Negl Trop Dis. 2017;11(6):e0005656. doi: https://dx.doi.org/10.1371/journal.pntd.0005656

Isman MB, Norris EJ. Bioinsecticide synergy: The good, the bad and the unknown. Curr Opin Environ Sci Health. 2024;42:100583. doi: https://dx.doi.org/10.1016/j.coesh.2024.100583

World Health Organization. Handbook for integrated vector management. Geneva: World Health Organization; 2012 [consultado 3 nov 2024]; disponible en: https://iris.who.int/handle/10665/44768

Venegas J, Vaselek S, Yasnot MF. Editorial: Latest advances in the biological control of vectors of human tropical diseases. Front Trop Dis. 2024;5:1430944. doi: https://dx.doi.org/10.3389/fitd.2024.1430944

World Health Organization. Regional Office for the Eastern Mediterranean. Use of fish for mosquito control. World Health Organization. Regional Office for the Eastern Mediterranean; 2003 [consultado 28 oct 2024 Oct 28]; Disponible en: https://iris.who.int/handle/10665/201148

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: https://dx.doi.org/10.1136/bmj.n71

Rayyan. Intelligent Systematic Review [Internet]. Rayyan; 2021 [consultado 12 oct 2024]. Disponible en: https://www.rayyan.ai/

Singh H, Gupta SK, Vikram K, Saxena R, Srivastava A, Nagpal BN. Sustainable control of malaria employing Gambusia fishes as biological control in Jalore and Barmer districts of Western Rajasthan. J Vector Dis. 2022;59(1):91-97. doi: https://dx.doi.org/10.4103/0972-9062.346869

Haq S, Srivastava HC. Efficacy of Aphanius dispar (Rüppell) an indigenous larvivorous fish for vector control in domestic tanks under the Sardar Sarovar Narmada project command area in District Kheda, Gujarat. J Vector Dis. 2013;50(2):137-140. doi: https://dx.doi.org/10.4103/0972-9062.117487

Ghosh SK, Chakaravarthy P, Panch SR, Krishnappa P, Tiwari S, Ojha VP et al. Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegypti in villages in Karnataka, India. BMC Public Health. 2011;11(1):599. doi: https://dx.doi.org/10.1186/1471-2458-11-599

Yu HS, Lee JH. Biological control of malaria vector (Anopheles sinensis Wied.) by combined use of larvivorous fish (Aplocheilus latipes) and herbivorous hybrid (Tilapia mossambicus niloticus) in rice paddies of Korea. Korean J Appl Entomol. 1989;28(4):229-236.

Kim HC, Lee JH, Yang KH, Yu HS. Biological control of Anopheles sinensis with native fish predators (Aplocheilus and Aphyocypris) and herbivorous fish, tilapia in natural rice fields in Korea. Korean J. Entomol. 2002;32(4):247-250.

Ranathunge T, Kusumawathie PHD, Abeyewickreme W, Udayanga L, Fernando T, Hapugoda M. Biocontrol potential of six locally available fish species as predators of Aedes aegypti in Sri Lanka. Biol Control. 2021;160:104638. doi: https://dx.doi.org/10.1016/j.biocontrol.2021.104638

Seng CM, Setha T, Nealon J, Socheat D, Chantha N, Nathan MB. Community-based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia. J Vector Ecol. 2008;33(1):139-144. doi: https://dx.doi.org/10.3376/1081-1710(2008)33[139:CUOTLF]2.0.CO;2

Rozendaal JA. Vector control: methods for use by individuals and communities. Geneva: World Health Organization; 1997 [consultado 2 nov 2024]; Disponible en: https://www.who.int/publications/i/item/9241544945

Raghavendra K. Subbarao SK. Chemical insecticides in malaria vector control in India. ICMR Bull. 2020;32(10):93-99.

Tabibzadeh I, Behbehani G, Nakhai R. Use of Gambusia fish in the malaria eradication programme of Iran [Internet]. World Health Organization. 1969 [consultado 1 nov 2024]. Disponible en: https://iris.who.int/handle/10665/65567

Walshe DP, Garner P, Adeel AA, Pyke GH, Burkot TR. Larvivorous fish for preventing malaria transmission. Cochrane Db Syst Rev. 2017;(12). doi: https://dx.doi.org/10.1002/14651858.CD008090.pub3

Kamareddine L. The biological control of the malaria vector. Toxins. 2012;4(9):748–67. doi: https://dx.doi.org/10.3390/toxins4090748

Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Negl Trop Dis. 2014;8(5):e2848. doi: https://dx.doi.org/10.1371/journal.pntd.0002848

Barrera R. Recomendaciones para el monitoreo de Aedes aegypti. Biomedica. 2016;36(3):454-462. doi: https://dx.doi.org/10.7705/biomedica.v36i3.2892

Cromwell EA, Stoddard ST, Barker CM, Van Rie A, Messer WB, Meshnick SR et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl Trop Dis. 2017;11(3):e0005429. doi: https://dx.doi.org/10.1371/journal.pntd.0005429

Scott TW, Morrison AC. Aedes aegypti density and the risk of dengue-virus transmission. En: Takken W, Scott TW, editores. Ecological aspects for application of genetically modified mosquitoes. Frontis; 2004. p. 187-206.

Rupp HR. Adverse assessments of Gambusia affinis: an alternate view for mosquito control practitioners’. J Am Mosquito Contr. 1996;12(2):155-166.

Chandra G, Bhattacharjee I, Chatterjee SN, Ghosh A. Mosquito control by larvivorous fish. Indian J Med Res. 2008;127(1):13-27.

Kulman A, Tamïr D. A man and his minnows: the introduction of Gambusia affinis to mandatory Palestine. Front Conserv Sci. 2022;3:649955. doi: https://dx.doi.org/10.3389/fcosc.2022.649955

Segev O, Mangel M, Blaustein L. Deleterious effects by mosquitofish (Gambusia affinis) on the endangered fire salamander (Salamandra infraimmaculata). Anim Conserv. 2009;12(1):29-37. doi: https://dx.doi.org/10.1111/j.1469-1795.2008.00217.x

Ng’ang’a PN, Aduogo P, Mutero CM. Strengthening community and stakeholder participation in the implementation of integrated vector management for malaria control in western Kenya: a case study. Malaria Journal. 2021;20(1):155. doi: https://dx.doi.org/10.1186/s12936-021-03692-4.

Published

2025-06-05

How to Cite

1.
Tortosa La Osa S, Esteo Alcalá MV, Martín Ruiz E, Olry de Labry-Lima A. Systematic review on the use of fish for vector control of mosquito-borne diseases: e202506028. Rev Esp Salud Pública [Internet]. 2025 Jun. 5 [cited 2025 Jun. 7];99(1):23 páginas. Available from: https://ojs.sanidad.gob.es/index.php/resp/article/view/1010