Heat and burden of diseases: impacts and future projections in capitals of the Legal Amazon

e202209067

Authors

  • Luis Sauchay Romero Departamento de Endemias Samuel Pessoa, Escuela Nacional de Salud Pública Sergio Arouca, Fundación Oswaldo Cruz (FIOCRUZ). Río de Janeiro. Brasil.
  • Ludmilla da Silva Viana Jacobson Departamento de Estadística, Universidad Federal Fluminense (UFF). Río de Janeiro. Brasil.
  • Hermano Albuquerque de Castro Centro de Estudios de la Salud del Trabajador y Ecología Humana, Escuela Nacional de Salud Pública Sergio Arouca, Fundación Oswaldo Cruz (FIOCRUZ). Río de Janeiro. Brasil.
  • Sandra de Souza Hacon Departamento de Endemias Samuel Pessoa, Escuela Nacional de Salud Pública Sergio Arouca, Fundación Oswaldo Cruz (FIOCRUZ). Río de Janeiro. Brasil.

Keywords:

Temperature, Climate change, Years of life lost, Cardiovascular diseases, Respiratory diseases, Mortality

Abstract

BACKGROUND // Under the influence of climate change, environmental exposure to heat and pollution grows, exacerbated by extreme events, increasing the risk of mortality in vulnerable areas. We aimed to evaluate the present (2000-2019) and future effects of heat on the burden of cardiovascular (in people aged 45 years or older), respiratory (in people aged 60 years or older) and all-cause (in people aged 1 year or more) diseases in capitals of the Legal Amazon (Brazil).
METHODS // An ecological study was conducted to initially estimate, for the period 2000-2019, the relative risk (RR) of exposure-response related to the effects of temperature on years of life potentially lost (YLL) using the generalized linear regression model (GLM), combined with the distributed non-linear lag model (DLNM); and the fractions of YLL attributable to heat from the prospective perspective (forward). Subsequently, the results were estimated in the baseline period (1970-2005) and projected into the future in the specific levels of warming and periods: 1.5 ºC (2010-2039), 2 ºC (2040-2069) and 4 ºC (2070-2099), considering the temperature data from the WCRP CORDEX regional climate model in RCP8.5 scenario.
RESULTS // The RR of YLL increased significantly in the capitals due to exposure to heat and marked thermal amplitudes between 2000-2019, with the major effects on respiratory diseases in Río Blanco (14%), due to all causes in Manaus (12%) and cardiovascular in Cuiabá (9%). Compared with the baseline period, the period 2040-2069 showed the largest increase (10.40 times) in the fraction of the number of YLL attributable to heat in the region, with the predominance of cardiovascular diseases. The findings were not completely conclusive, the low precision of the estimated confidence intervals did not show the significance of the negative effect of heat.
CONCLUSIONS // Regardless of its significance, heat increases the risk of years of life lost in the short and medium term. The results support the need to include climate change mitigation and adaptation measures as public health protection policies.

Downloads

Download data is not yet available.

References

Grupo Intergubernamental de Expertos sobre el Cambio Climático (Suiza). Calentamiento global de 1,5 ºC. Ginebra: IPCC; 2019.

Ministerio de Ciencias, Tecnología e Innovaciones (Brasil). Cuarta Comunicación Nacional do Brasil. Brasilia: Gobierno Federal; 2019.

Centre for Research on the Epidemiology of Disasters. The International Disaster Database-EM-DAT. 2021. Disponible en: https://www.emdat.be/ [Citado 14 de noviembre de 2021].

Smith AJP, Jones MW, Abatzoglou JT, Canadell JG, Betts RA. Climate change increases the risk of wildfires. ScienceBrief [Internet]. 2020 [Citado 14 de noviembre de 2021]. Disponible en: https://doi.org/10.5281/zenodo.4570195

Stawski C, Doty AC. Understanding of organismal responses to fire. Current Biology. 2019;29:146-147.

Lui Z, Murphy JP, Maghirang R, Devlin D. Health and Environmental Impacts of Smoke from Vegetation Fires: A Review. Journal of Environmental Protection. 2016;7:1860-1885.

Guyton AC, Hall JE, Hall ME. Fisiologia médica. 14ª ed. San Paulo: GEN Guanabara Koogan;2021.

Estela LBL. Pronósticos biometeorológicos. La Habana: Citmatel;2019.

Doubleday A, Schulte J, Sheppard L, Kadlec M, Dhammapala R, Fox J et al. Mortality associated with wildfire smoke exposure in Washington state, 2006-2017: a case-crossover study. Environmental Health. 2020;19:1-10.

Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nature Reviews Cardiology. 2020;17:656-672.

Sun Z, Chen Ch, Yan M, Shi W, Wang J, Ban J et al. Heat wave characteristics, mortality and effect modification by temperature zones: a time-series study in 130 counties of China. International Journal of Epidemiology. 2020;49:1813–1822.

Wang Ch, Zhang Z, Maigeng Z, Wang P, Yin P, Ye W et al. Different response of human mortality to extreme temperatures (MoET) between rural and urban areas: A multi-scale study across China. Health & Place. 2018;50:119-129.

Oliveira BF, Silveira IH, Feitosa RC, Horta MAP, Junger WL, Hacon S. Human Heat stress risk prediction in the Brazilian semiarid Region based on the Wet-Bulb Globe Temperature. Annals of the Brazilian Academy of Sciences. 2019;91:1-13.

Gonçalves KS. Cardiovascular diseases and the exposure to particulate air pollutants derived from forest fires in Puerto Viejo municipality, Rondônia state, Brazilian amazon rain forest region [tesis doctoral]. Río de Janeiro (RJ): Escuela Nacional de Salud Pública;2016 (81p).

Silveira HI, Cortes TR, Oliveira BFA, Junger WL. Temperature and cardiovascular mortality in Río de Janeiro, Brazil: effect modification by individual-level and neighbourhood-level factors. J Epidemiol Community Health. 2020;0:1-7.

Luan G, Yin P, Li T, Wang L, Zhou M. The years of life lost on cardiovascular disease attributable to ambient temperature in China. Scientific Reports. 2017;7:1-9.

Hajat S, Armstrong B, Gouveia N, Wilkinson P. Mortality displacement of heat-related deaths: A comparison of Delhi, San Paulo and London. Epidemiology. 2005;16:613-620.

Reichenheim ME, Werneck GL. Anos Potenciais de Vida Perdidos no Río de Janeiro, 1990. As Mortes Violentas em Questão. Cadernos de Saúde Pública. 1994;10:188-198.

Jiao A, Yu Ch, Xiang Q, Zhang F, Chen D, Zhang L et al. Impact of summer heat on mortality and years of life lost: Application of a novel indicator of daily excess hourly heat. Environmental Research. 2019;172:596-603.

Broome RA, Powel J, Cope ME, Morgan GG. The mortality effect of PM2.5 sources in the Greater Metropolitan Region of Sidney, Australia. Environmental International. 2020;137:105429.

Ministério da Saúde (Brasil). Saúde brasil 2018. Uma análise da situação de saúde e das doenças e agravos crônicos: desafios e perspectivas. Brasília: Secretaria de Vigilância em Saúde; 2019.

Jacobson LSV, Oliveira BFA, Perez LP, Hacon SS. Impacto do aquecimento global nos anos potenciais de vida perdidos por doenças cardiorrespiratórias em capitais brasileiras. Sustainability in Debate. 2020;11:346-360.

Instituto Nacional De Pesquisas Espaciais. Queimadas. 2021. Disponible en: https://queimadas.dgi.inpe.br/queimadas/portal-static/estatisticas_estados/ [Citado 14 de noviembre de 2021].

DATASUS: Departamento de Informática del Sistema Único de Salud [Internet]. Brasilia: Tabnet [citado el 24 de abril de 2022]. Disponible en: https://datasus.saude.gov.br/informacoes-de-saude-tabnet/

Organización Mundial de la Salud. Métodos y fuentes de datos de la OMS para las estimaciones de la carga mundial de enfermedades. OMS. 2017. Disponible en: https://www.who.int/healthinfo/global_burden_disease/GlobalDALYmethods_2000_2015.pdf [Citado 25 de noviembre de 2021].

Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models. Statist. Med. 2010;29:2224-2234.

Fumes G, Corrente JE. Modelos Inflacionados de Zeros: Aplicações na análise de um questionárío de frequência alimentar. Ver. Bras. Biom. 2010;28(1):24-38.

Guo Y, Li S, Pan X, Zhang J, Williams G. The burden of air pollution on years of life lost in Beijing, China, 2004-08: retrospective regression analysis of daily deaths. BMJ. 2013;347:1-10.

Huang J, Li G, Liu Y, Huang J, Xu G, Qian X et al. Projections for temperature-related years of life lost from cardiovascular diseases in the elderly in a Chinese city with typical subtropical climate. Environmental Research. 2018;167:614-621.

Silveira IH, Oliveira BFA, Cortes TR, Junger WL. The effect of ambient temperature on cardiovascular mortality in 27 Brazilian cities. Science of the Total Environment. 2019;691:996-1004.

Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Statist. Med. 2012; 31:3821-3839.

Gasparrini A., Leone M. Attributable risk from distributed lag models. BMC Medical Research Methodology. 2014;55:1-8.

Rezende LFM, Eluf-Neto J. Fração atribuível populacional: planejamento de ações de prevenção de doenças no Brasil. Ver. Saúde Pública. 2016;30:1-6.

Programa Mundial de Investigaciones sobre el Clima. CORDEX. WCRP. 2022. Disponible en: https://cordex.org/about/what-is-regional-downscaling/ [Citado 1 de mayo de 2022].

Intergovernmental Panel on Climate Change. Representative Concentration Pathways (RCPs). IPCC. 2019. Disponible en: https://sedac.ciesin.columbia.edu/ddc/ar5_scenarío_process/RCPs.html [Citado 25 de noviembre de 2021].

Arriaga EE. Los años de vida perdidos: su utilización para medir el nivel y cambio de la mortalidad. United State: U.S Bureau of the Census; 1995.

Secretaría de Vigilancia en Salud (Brasil). Principales causas de muerte. Brasilia: Ministerío de la Salud; 2021.

Giorgini P, Giosia P, Petrarca M, Lattanzio F, Stammerra CA, Ferri C. Climate Changes and Human Health: A Review of the Effect of Environmental Stressors on Cardiovascular Diseases Across Epidemiology and Biological Mechanisms. Current Pharmaceutical Design. 2017;23:3247-3261.

Chen CC, Wang YR, Wang YC, Lin SL, Chen CT, Lu MM et al. Projection of future temperature extremes, related mortality, and adaptation due to climate and population changes in Taiwan. Science of the Total Environment. 2021;760.

Huang J, Zeng Q, Pan X, Guo X, Li G. Projections of the effects of global warming on the disease burden of ischemic heart disease in the elderly in Tianjin, China. BMC Public Health. 2019;19:4-12.

Zhao Q, Li S, Coelho MSZS, Saldiva PHN, Hu K, Abramson MJ et al. Assessment of Intraseasonal Variation in Hospitalization Associated With Heat Exposure in Brazil. JAMA Network Open. 2019;2:1-11.

Veefkind P, Oss RF, Eskes H, Borowiak A, Dentner F, Wilson J. The Applicability of Remote Sensing in the Field of Air Pollution. Luxemburgo:European Commission;2007.

Åström DO, Tornevi A, Ebi KL, Rocklöv J, Forsberg B. Evolution of minimum mortality temperature in Stockholm, Sweden, 1901-2009. Environ Health Perspect. 2016;124:740-744.

Blanco-Becerra LC, Pinzón-Flórez CE, Idrovo ÁJ. Estudios ecológicos en salud ambiental: más allá de la epidemiología. 2015;35(3):191-206.

Published

2022-09-09 — Updated on 2024-02-27

Versions

How to Cite

1.
Sauchay Romero L, da Silva Viana Jacobson L, Albuquerque de Castro H, de Souza Hacon S. Heat and burden of diseases: impacts and future projections in capitals of the Legal Amazon: e202209067. Rev Esp Salud Pública [Internet]. 2024 Feb. 27 [cited 2024 Nov. 27];96:37 páginas. Available from: https://ojs.sanidad.gob.es/index.php/resp/article/view/305