Strategies in the prevention and control of the COVID-19 pandemic caused by SARS-CoV-2. Environmental factors

e202011115

Authors

  • Francisco Alberto Tomei Torres Investigador en salud ambiental. Sociedad Iberoamericana de Salud Ambiental.

Keywords:

COVID-19, SARS-CoV-2, Influenza, Flu, Environmental factors, Temperature, Humidity, Ultraviolet light, Seasons of the year, Particulate matter

Abstract

The role that environmental factors can play in preventing and controlling the COVID-19 epidemic was explored and compared to that of influenza. Papers cited by the U.S. National Academy of Sciences were discussed, which indicate that temperature and humidity in the environment can influence the intensity of the spread of the disease. The fact that influenza viruses and coronaviruses appeared seasonally, prevailing in the winter and declining in the summer, was illustrated. It was discussed that ultraviolet light in the environment can contribute to the control of the spread of the virus. A study was cited to suggest that particulate matter contributes to increased infection mortality, and that it increases in summer in some regions, countering the health effects of humidity and temperature. Data generated by online electronic tools was compared with surveillance reports generated by the U.S. Centers for Disease Control and Prevention. The epidemic began stronger in northern hemisphere countries during the northern winter. (Evidence that the epidemic intensified during the southern winter is not disputed.) The incidence declined in the northern hemisphere during the summer, except for the U.S., where cases doubled. Evidence suggests that the high degree of SARS-CoV-2 infection counteracts the role that environmental factors may play in COVID-19 control.

Downloads

Download data is not yet available.

References

Rhodes JM, Subramanian S, Laird E, Kenny RA. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment. Pharmacol. Ther. 2020; 51(12):1434-1437. https://doi.org/10.1111/apt.15777

Worldometer. Coronavirus: Casos reportados y muertes por país, territorio o transporte. 2020; Disponible en: https://bit.ly/2Tg2sVB

Centers for Disease Control and Prevention. Enfermedad del coronavirus 2019 (COVID-19). Cómo protegerse y proteger a los demás. 2020; Disponible en:

https://bit.ly/3kv3rgD

He D, Gao D, Li Y, Zhuang Z, Cao P, Lou Y et al. An Updated Comparison of COVID-19 and Influenza. SSRN Elec J 2020. https://doi.org/10.2139/ssrn.3573503

Shao N, Cheng J, ChenW. The reproductive number R0 of COVID-19 based on estimate of a statistical time delay dynamical system. medRxiv 2020:2020.02.17.20023747. https://doi.org/10.1101/2020.02.17.20023747

Ke R, Sanche S, Romero-Severson E, Hengartner N. Fast spread of COVID-19 in Europe and the US suggests the necessity of early, strong and comprehensive interventions. 2020. https://doi.org/10.1101/2020.04.04.20050427

Centers for Disease Control and Prevention. Carga de la enfermedad de la influenza. Centers for Disease Control and Prevention 2019; Disponible en: https://bit.ly/3a31oKn

Centers for Disease Control and Prevention. Estudios de los CDC sobre la efectividad de la vacuna contra la influenza estacional. Centers for Disease Control and Prevention 2019; Disponible en: https://bit.ly/3coqaGv

Reed C, Chaves SS, Daily Kirley P, Emerson R, Aragon D, Hancock EB et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One 2015; 10(3):e0118369.

https://doi.org/10.1371/journal.pone.0118369

Centers for Disease Control and Prevention. Porciento de muertes causadas por influenza, pulmonía y COVID-19 Centers for Disease Control and Prevention 2020; Disponible en: https://bit.ly/2yENCAX

Food and Drug Administration. Actualización sobre el coronavirus (COVID-19): La FDA emite una autorización de uso de emergencia para el posible tratamiento con COVID-19. Food and Drug Administration 2020; Disponible en: https://bit.ly/2y9XVN1

Food and Drug Administration. Recomendaciones para el plasma convaleciente de investigación COVID-19. Food and Drug Administration 2020; Disponible en:

https://bit.ly/3e6We2v

Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020. https://doi.org/10.1001/jama.2020.10044

Dowdy D, D’Souza G. Early Herd Immunity against COVID-19: A Dangerous Misconception. 2020; Disponible en: https://bit.ly/2X4jabD

The National Academies of Sciences, E., and Medicine, Rapid Expert Consultation on SARS-CoV-2 Survival in Relation to Temperature and Humidity and Potential for Seasonality for the COVID-19 Pandemic (April 7, 2020). 2020, Washington, DC: The National Academies of Sciences, Engineering, and Medicine. The National Academies Press. 8. https://doi.org/10.17226/25771

Notari A. Temperature dependence of COVID-19 transmission. 2020. https://doi.org/10.1101/2020.03.26.20044529

Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Elec J 2020.

https://doi.org/10.2139/ssrn.3550308

Islam N, Shabnam S, Erzurumluoglu AM. Temperature, humidity, and wind speed are associated with lower Covid-19 incidence. 2020.

https://doi.org/10.1101/2020.03.27.20045658

Ficetola GF, Rubolini D. Climate affects global patterns of COVID-19 early outbreak dynamics. 2020.

https://doi.org/10.1101/2020.03.23.20040501

Wang J, Tang K, Feng K, Lv W. High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Elec J 2020. https://doi.org/10.2139/ssrn.3551767

van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill. 2013; 18(38).

https://doi.org/10.2807/1560-7917.es2013.18.38.20590

Chan KH, Peiris JS, Lam SY, Poon L, Yuen KY, Seto WH. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv. Virol. 2011; 2011:734690. https://doi.org/10.1155/2011/734690

Steel J, Palese P, Lowen AC. Transmission of a 2009 pandemic influenza virus shows a sensitivity to temperature and humidity similar to that of an H3N2 seasonal strain. J Virol 2011; 85(3):1400-2.

https://doi.org/10.1128/JVI.02186-10

Qi H, Xiao S, Shi R, Ward MP, Chen Y, Tu W et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Sci. Total Environ. 2020; 728:138778.

https://doi.org/10.1016/j.scitotenv.2020.138778

Luo W, Majumder MS, Liu D, Poirier C, Mandl KD, Lipsitch M et al. The role of absolute humidity on transmission rates of the COVID-19 outbreak. 2020.

https://doi.org/10.1101/2020.02.12.20022467

World Health Organization. Influenza Laboratory Surveillance Information generated on 11/08/2020 16:57:19 UTC by the Global Influenza Surveillance and Response System (GISRS) Northern hemishere. 2020; Disponible en:

https://bit.ly/3kBsyhW

World Health Organization. Influenza Laboratory Surveillance Information generated on 11/08/2020 17:11:35 UTC by the Global Influenza Surveillance and Response System (GISRS) Southern hemisphere. 2020.

https://bit.ly/2PJQ7XK

Blanton L, Kniss K, Smith S, Mustaquim D, Steffens C, Flannery B et al. Update: Influenza Activity-United States and Worldwide, May 24–September 5, 2015. MMWR 2015; 64(36):1011-1016.

https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6436a4.htm

Centers for Disease Control and Prevention. About Severe Acute Respiratory Syndrome (SARS). Centers for Disease Control and Prevention 2013 04/09/2020]; Disponible en: https://www.cdc.gov/sars/guidance/core/app1.pdf

Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses 2020; 12(3).

https://doi.org/10.3390/v12030254

Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. U. S. A. 2020; 117(17):9241-9243.

https://doi.org/10.1073/pnas.2004999117

Lan L, Xu D, Ye G, Xia C, Wang S, Li Y et al. Positive RT-PCR Test Results in Patients Recovered From COVID-19. JAMA 2020.

https://doi.org/10.1001/jama.2020.2783

Xiao AT, Tong YX, Zhang S. False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: Rather than recurrence. J Med Virol 2020.

https://doi.org/10.1002/jmv.25855

Sagripanti JL, Lytle CD. Inactivation of influenza virus by solar radiation. Photochem. Photobiol. 2007; 83(5):1278-82. https://doi.org/10.1111/j.1751-1097.2007.00177.x

Ratnesar-Shumate S, Williams G, Green B, Krause M, Holland B, Wood S et al. Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J Infect Dis 2020; 222(2):214-222. https://doi.org/10.1093/infdis/jiaa274

Schuit M, Ratnesar-Shumate S, Yolitz J, Williams G, Weaver W, Green B et al. Airborne SARS-CoV-2 is Rapidly Inactivated by Simulated Sunlight. J Infect Dis 2020. https://doi.org/10.1093/infdis/jiaa334

Dowell SF. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg Infect Dis 2001; 7(3):369-74. https://doi.org/10.3201/eid0703.010301

Panarese A, Shahini E. Letter: Covid-19, and vitamin D. Aliment. Pharmacol. Ther. 2020; 51(10):993-995. https://doi.org/10.1111/apt.15752

Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356:i6583. https://doi.org/10.1136/bmj.i6583

Wu X, Nethery, RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020:2020.04.05.20054502.

https://www.ncbi.nlm.nih.gov/pubmed/32511651

Chen R, Peng RD, Meng X, Zhou Z, Chen B, Kan H. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES). Sci. Total Environ. 2013; 450-451:259-65. https://doi.org/10.1016/j.scitotenv.2013.02.040

Peng RD, Dominici F, Pastor-Barriuso R, Zeger SL, Samet JM. Seasonal analyses of air pollution and mortality in 100 US cities. Am. J. Epidemiol. 2005; 161(6):585-94. https://doi.org/10.1093/aje/kwi075

Ortiz JR, Zhou H, Shay DK, Neuzil KM, Fowlkes AL, Goss CH. Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends. PLoS One 2011; 6(4):e18687. https://doi.org/10.1371/journal.pone.0018687

Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol 2013; 9(10):e1003256.

https://doi.org/10.1371/journal.pcbi.1003256

Moisse K. “Google Flu Trends” Found to Be Nearly on Par with CDC Surveillance Data. Sci. Am. 2010; Disponible en: https://bit.ly/3bdITEs

Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014; 343(6176):1203-5.

https://doi.org/10.1126/science.1248506

Kinsa US. Healthweather Map. 2020 April 15, 2020]; Disponible en: https://healthweather.us/

Insights K. HealthWeather by Kinsa Insights - The amount of current unexpected illness, expressed as additional share of the population affected by influenza-like illness, above the expected values.; 10 de agosto de 2020. 2020; Disponible en: https://bit.ly/3kAwboh

Centers for Disease Control and Prevention. NCHS Mortality Surveillance Data Data as of August 6, 2020 for the Week Ending August1, 2020 (Week 31). Centers for Disease Control and Prevention 2020; Disponible en: https://bit.ly/3gUnDXd

Puerto Rico Health Department. Informe influenza - Semana 18. Sistema de Vigilancia de Influenza de Puerto Rico 2020; Disponible en: https://bit.ly/3bA8gQ8

Puerto Rico Health Department. Coronavirus. 2020; Disponible en: https://bit.ly/2WEbzS0

Centers for Disease Control and Prevention. Weekly U.S. Influenza Surveillance Report: Key Updates for Week 16, ending April 18, 2020. Centers for Disease Control and Prevention 2020; Disponible en: https://bit.ly/3c53XgV

Gaunt ER, Hardie A, Claas EC, Simmonds P, and Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 2010; 48(8):2940-7. https://doi.org/10.1128/JCM.00636-10

Tendencias de Google. Comparación de con . 2020 3 de mayo de 2020]; Disponible en: https://bit.ly/3abH1uo

Centers for Disease Control and Prevention. National Syndromic Surveillance Program (NSSP): Emergency Department Visits Percentage of Visits for COVID-19-Like Illness (CLI) or Influenza-like Illness (ILI) September 29, 2019 - April 4, 2020 Data as of April 9, 2020. Centers for Disease Control and Prevention 2020 1 de mayo de 2020]; Disponible en: https://bit.ly/2KS2gY9

Centers for Disease Control and Prevention. 2020. Casos, datos y vigilancia. Datos anteriores de casos de COVID-19 en los EEUU. Disponible en:

https://espanol.cdc.gov/coronavirus/2019-ncov/cases-updates/previouscases.html.

Yao Y, Pan J, Liu Z, Meng X, Wang W, Kan H et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur. Respir. J. 2020; 55(5).

https://doi.org/10.1183/13993003.00517-2020

Yao M, Zhang L, Ma J, Zhou L. On airborne transmission and control of SARS-Cov-2. Sci. Total Environ. 2020:139178.

https://doi.org/10.1016/j.scitotenv.2020.139178

Published

2020-11-23

How to Cite

1.
Tomei Torres FA. Strategies in the prevention and control of the COVID-19 pandemic caused by SARS-CoV-2. Environmental factors: e202011115. Rev Esp Salud Pública [Internet]. 2020 Nov. 23 [cited 2025 Feb. 15];94:18 páginas. Available from: https://ojs.sanidad.gob.es/index.php/resp/article/view/737

Issue

Section

Colaboraciones especiales

Categories