Validity of predictive power of the Adjusted Morbidity Groups (AMG) with respect to others population stratification tools
e202007079
Keywords:
Risk groups, Chronic disease, Software, Morbidity, Severity of illness, Health outcomes, Health resources, Mortality, Emergencies, Primary health careAbstract
Background: This work was performed in order to get objective elements of judgment that support the improvement of a national population morbidity grouper based in the Adjusted Morbidity Groups (AMG). The study compared the performance in terms of predictive power on certain health and resource outcomes, in between the AMG and several existing morbidity groupers (ACG®, Adjusted Clinical Groups and CRG®, Clinical Risk Group) used in some Autonomous Regions in Spain (Aragón, Canarias y Castilla y León).
Methods: Cross-sectional analytical study in entitled/insured population with respect to rights of healthcare. Predictive capacity of the complexity weight obtained with the different stratification tools in the first year of the study period was evaluated using a simple classification method that compares the areas under the curves ROC for the following outcomes that occurred in the second year of the study period: Probability of death; probability of having at least one urgent hospital admission; total number of visits to hospital emergencies; total number of visits to primary care; total number of visits to hospital care and spending in pharmacy.
Results: The results showed that AMG complexity weight were good predictors for almost all the analyzed outcomes (AUC ROC>0.7; p<0.05), for the different Autonomous Regions and compared to ACG® or CRG®. Only for the outcome of visits to hospital emergencies in Aragon and Canarias; and visits to specialized care in Aragon, the predictive power was weak for all the compared stratification tools.
Conclusions: GMA® is a population stratification tool adequate and as useful as others existing morbidity groupers.
Key words: Risk groups, Chronic disease, Software, Morbidity, Severity of illness, Health outcomes, Health resources, Mortality, Emergencies, Primary health care.
Downloads
References
Fortin M, Bravo G, Hudon C, Vanase A, Lapointe L. Prevalence of multimorbidity among adults seen in family practice. Ann Fam Med 2005;3:223-228.
Tinetti ME, Fried TR, Boyd CM. Designing health care for the most chronic condition - multimorbidity. JAMA 2012;307(23):2493-2494.
Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. The Lancet 2012 Jul 7;380(9836):37-43.
Wolff JL, Starfield B, Anderson G. Prevalence, expenditure, and complications of multiple chronic conditions in the elderly. Arch Intern Med. 2002;162:2269-2276.
Instituto Nacional de Estadística. Indicadores demográficos. Esperanza de vida al nacimiento.
Ministerio de Sanidad, Servicios Sociales e Igualdad. Estrategia para el Abordaje de la Cronicidad en el Sistema Nacional de Salud (2012). http://www.mscbs.gob.es/organizacion/sns/planCalidadSNS/pdf/ESTRATEGIA_ABORDAJE_CRONICIDAD.pdf.
Cerezo J, Arias C. Population stratification: a fundamental instrument used for population health management in Spain. Good Practice Brief. High-level regional meeting- Health systems respond to NCDs: Experiences in the European region. Sitges, Spain, 16–18 April 2018. http://www.euro.who.int/en/countries/spain/publications/population-stratification-a-fundamental-instrument-used-for-population-health-management-in-spain-2018.
Nalin M et al. (2016) ‘White Paper on Deployment of Stratification Methods’. https://www.researchgate.net/publication/309242777_White_Paper_On_Deployment_of_Stratification_Methods.
Dueñas-Espín I et al. (2016) ‘Proposals for enhanced health risk assessment and stratification in an integrated care scenario’, BMJ open. British Medical Journal Publishing Group, 6(4), p. e010301. doi: 10.1136/bmjopen-2015-010301.
WHO (2016) Strengthening people-centred health systems in the WHO European Region: framework for action on integrated health services delivery. Copenhagen: WHO Regional Office for Europe; 2016. http://www.euro.who.int/__data/assets/pdf_file/0004/315787/66wd15e_FFA_I.
Monterde D, Vela E, Clèries M. “Los grupos de morbilidad ajustados: nuevo agrupador de morbilidad poblacional de utilidad en el ámbito de la atención primaria”. Aten Primaria 2016; 48:674-82.
Ministerio de Sanidad, Servicios Sociales e Igualdad. Informe del proyecto de Estratificación de la población por Grupos de Morbilidad Ajustados (GMA) en el Sistema Nacional de Salud (2014-2016) (2018). http://www.mscbs.gob.es/organizacion/sns/planCalidadSNS/pdf/informeEstratificacionGMASNS_2014-2016.pdf.
González González AI et al. Concordancia y utilidad de un sistema de estratificación para la toma de decisiones clínicas. Aten Primaria. 2016. http://dx.doi.org/10.1016/j.aprim.2016.04.009.
Orueta et al. BMC Health Services Research 2013, 13:269. http://www.biomedcentral.com/1472-6963/13/269.
Estupiñan-Ramírez M et al. Comparación de modelos predictivos para la selección de pacientes de alta complejidad. Gac Sanit. 2017. http://dx.doi.org/10.1016/j.gaceta.2017.06.003.
Monterde D et al. Validez de los grupos de morbilidad ajustados respecto a los clinical risk groups en el ámbito de la atención primaria. Aten Primaria. 2018. https://doi.org/10.1016/j.aprim.2017.09.012.
OECD (2019), Health in the 21st Century: Putting Data to Work for Stronger Health Systems, OECD Health Policy Studies, OECD. Publishing, Paris, https://doi.org/10.1787/e3b23f8e-en.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Carmen Arias-López, Mª Pilar Rodrigo Val, Laura Casaña Fernández, Lydia Salvador Sánchez, Ana Dorado Díaz, Marcos Estupiñán Ramírez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato.
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia.
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Avisos:
No tiene que cumplir con la licencia para elementos del material en el dominio público o cuando su uso esté permitido por una excepción o limitación aplicable.
No se dan garantías. La licencia podría no darle todos los permisos que necesita para el uso que tenga previsto. Por ejemplo, otros derechos como publicidad, privacidad, o derechos morales pueden limitar la forma en que utilice el material.