Wolbachia pipientis infections in populations of Aedes albopictus in the city of València (Spain): implications for mosquito control
e202303017es
Keywords:
Aedes albopictus, Wolbachia, València, Insect Incompatible Technique (IIT), Biological control, Mosquito control, 16S rRNA gene, wspAbstract
BACKGROUND // The presence of Aedes albopictus, of high sanitary and social impact, was first reported in Valencia (Eastern Spain) in 2015. Innovative tools for its control include the use of the endosymbiotic bacterium Wolbachia pipientis. The release of mosquito males infected with the wPip strain, has proven very promising for large-scale Incompatible Insect Technique (IIT) applications. Before this strategy can be implemented in Valencia, it is important to know whether the natural local mosquito populations are Wolbachia-infected and, if so, identifying the infecting strains/supergroups, these being the objectives of the present work.
METHODS // Eggs were collected from the 19 districts of the València city between May and October 2019. A total of 50 lab-reared adult Ae. albopictus individuals were processed and analyzed for Wolbachia detection and molecular characterization. These actions took place within the framework of a collaboration established with the Department of Health and Consumer Affairs of the city council of Valencia. Fisher’s exact test was used to detect the statistical significance of the differences between groups.
RESULTS // Our study revealed that 94% of the analyzed samples were naturally infected with Wolbachia. Both wAlbA and wAlbB supergroups were identified, with most samples (72% of the infected ones) carrying co-infections.
CONCLUSIONS // These data provide the first characterization of the Wolbachia presence in natural populations of Ae. albopictus in the Mediterranean area of Spain. This information is relevant to evaluate the potential use of Wolbachia strains in order to achieve the suppression of the Asian tiger mosquito populations through massive release of artificially-infected males.
Downloads
References
Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 2015 Jun 30;4:e08347. doi: https://dx.doi.org/10.7554/eLife.08347
Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M et al. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PloS One. 2007 Nov 14;2(11):e1168. doi: https://dx.doi.org/10.1371/journal.pone.0001168
Zhao H, Zhang FC, Zhu Q, Wang J, Hong WX, Zhao LZ et al. Epidemiological and virological characterizations of the 2014 dengue outbreak in Guangzhou, China. PloS One; 2016 Jun 3;11(6):e0156548. Doi: https://dx.doi.org/10.1371/journal.pone.0156548
McKenzie BA, Wilson AE, Zohdy S. Aedes albopictus is a competent vector of Zika virus: A meta-analysis. PloS One. 2019 May 21;14(5):e0216794. doi: https://dx.doi.org/10.1371/journal.pone.0216794
Barzon L, Gobb, F, Capelli G, Montarsi F, Martini S, Riccetti S et al. Autochthonous dengue outbreak in Italy 2020: clinical, virological and entomological findings. J Travel Med. 2021 Dec 29;28(8):taab130. doi: https://dx.doi.org/10.1093/jtm/taab130
Jourdain F, Roiz D, de Valk H, Noël H, L’ambert G, Franke F et al. From importation to autochthonous transmission: Drivers of chikungunya and dengue emergence in a temperate area. PloS Negl Trop Dis. 2020 May 11;14(5):e0008320. doi: https://dx.doi.org/10.1371/journal.pntd.0008320
Gjenero-Margan I, Aleraj B, Krajcar D, Lesnikar V, Klobučar A, Pem-Novosel I et al. Autochthonous dengue fever in Croatia, August-September 2010. Euro Surveill. 2011 Mar 3;16(9):19805. [consultado 10 agosto 2022]. Disponible en: https://www.eurosurveillance.org/content/10.2807/ese.16.09.19805-en
Venturi G, Di Luca M, Fortuna C, Remoli ME, Riccardo F, Severini F, Toma L et al. Detection of a chikungunya outbreak in central Italy, August to September 2017. Euro Surveill. 2017 Sep;22(39):17-00646. doi: https://dx.doi.org/10.2807/1560-7917.ES.2017.22.39.17-00646
European Center for Disease Control (ECDC). Local transmission of dengue fever in France and Spain-2018. Rapid Risk Assessment: 13 pp. [consultado 10 agosto 2022]. Disponible en https://www.ecdc.europa.eu/sites/default/files/documents/08-10-2018-RRA-Dengue-France.pdf
Brady OJ, Hay SI. The first local cases of Zika virus in Europe. Lancet. 2019 Nov 30;394(10213):1991-1992. doi: https://dx.doi.org/10.1016/S0140-6736(19)32790-4
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504-7. doi: https://dx.doi.org/10.1038/nature12060
European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment: Autochthonous cases of dengue in Spain and France, 1 October 2019. [Consultado 10 agosto 2022]. Disponible en: https://www.ecdc.europa.eu/sites/portal/files/documents/RRA-dengue-in-Spain-and-France.pdf
Aranda C, Martínez MJ, Montalvo T, Eritja R, Navero-Castillejos J, Herreros E et al. Arbovirus surveillance: first dengue virus detection in local Aedes albopictus mosquitoes in Europe, Catalonia, Spain, 2015. Euro Surveill. 2018 Nov;23(47):1700837. doi: https://dx.doi.org/10.2807/1560-7917.es.2018.23.47.1700837
Baldacchino F, Caputo B, Chandre F, Drago A, della Torre A, Montarsi F et al. Control methods against invasive Aedes mosquitoes in Europe: a review. Pest Manag Sci. 2015 Nov;71(11):1471-85. doi: https://dx.doi.org/10.1002/ps.4044
Pichler V, Bellini R, Veronesi R, Arnoldi D, Rizzoli A, Lia RP et al. First evidence of resistance to pyrethroid insecticides in Italian Aedes albopictus populations 26 years after invasion. Pest Manag Sci. 2018 Jun;74(6):1319-1327. doi: https://dx.doi.org/10.1002/ps.4840
Aranda C, Eritja R, Roiz, D. First record and establishment of the mosquito Aedes albopictus in Spain. Med Vet Entomol. 2006 Mar;20(1):150-152. doi: https://dx.doi.org/10.1111/j.1365-2915.2006.00605.x
Lucientes-Curdi J, Molina-Moreno R, Amela-Heras C, Simon-Soria F, Santos-Sanz S, Sánchez-Gómez A et al. Dispersion of Aedes albopictus in the Spanish Mediterranean Area. Eur J Public Health. 2014 Aug;24(4):637-640. doi: https://dx.doi.org/10.1093/eurpub/cku002
Ministerio de Sanidad, Consumo y Bienestar Social (MSCBS). 2019. Vigilancia Entomológica: resultados de 2018. [consultado 10 agosto 2022]. Disponible en: https://www.mscbs.gob.es/ciudadanos/saludAmbLaboral/docs/Encuesta_Vigilancia_Entomologica.2018.pdf
Melero-Alcibar R, Tello A, Marino E, Vázquez, MA. Aedes (Stegomyia) albopictus (Skuse, 1894) (Diptera, Culicidae) first detection for the Community of Madrid, Spain. Boln. Asoc. Esp. Ent. 2017; 41 (3-4): 515-519.
Ordóñez Iriarte JM, Iriso Calle A, Fuster Lorán F, Tello Fierro A, Junco Bonet A, De la Cruz Pérez M. Vigilancia entomológica de Aedes (Stegomyia) albopictus (Skuse, 1894) en la Comunidad de Madrid: avance de resultados 2016-2020. Rev. Salud ambient. 2021; 21(2):160-169.
Bueno-Marí R, Quero de Lera F. Vigilancia entomológica frente a mosquitos invasores en la ciudad de Valencia: primer registro del mosquito tigre, Aedes albopictus (Skuse, 1894), en el municipio. Zool Baetica. 2015; 26, 145-151.
Bueno-Marí R, Quero de Lera F. Gestión vectorial de los casos de arbovirosis notificados en la ciudad de Valencia, España (2016-2018). 2021 May 10;95:e202105064.
Tancredi A, Papandrea D, Marconcini M, Carballar-Lejarazu R, Casas-Martinez M, Lo E et al. Tracing temporal and geographic distribution of resistance to pyrethroids in the arboviral vector Aedes albopictus. PLoS Negl Trop Dis. 2020 Jun 22;14(6):e0008350. doi: https://dx.doi.org/10.1371/journal.pntd.0008350
Huang Y-JS, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects. 2017 Feb 10;8(1):21. doi: https://dx.doi.org/10.3390/insects8010021
Alphey N Bonsall, MB. Genetics-based methods for agricultural insect pest management. Agric For Entomol. 2018 May;20(2):131-140. doi: https://dx.doi.org/10.1111/afe.12241
Sicard M, Bonneau M, Weill M. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. Curr Opin Insect Sci. 2019 Aug;34:12-20. doi: https://dx.doi.org/10.1016/j.cois.2019.02.005
Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng et al. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis. 2019 Jan 3;13(1):e0006822. doi: https://dx.doi.org/10.1371/journal.pntd.0006822
Landmann F. The Wolbachia endosymbionts. Microbiol Spectr. 2019 Mar;7(2). doi: https://dx.doi.org/10.1128/microbiolspec.BAI-0018-2019
Olanratmanee P, Baimai V, Ahantarig A. Trinachartvanit W. Novel supergroup U Wolbachia in bat mites of Thailand. Southeast Asian J Trop Med Public Health 2021 Feb;52:48-55.
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008 Oct;6(10):741-51. doi: https://dx.doi.org/10.1038/nrmicro1969
Hoffmann AA, Ross PA, Rašić G. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl. 2015 Sep;8(8):751-68. doi: https://dx.doi.org/10.1111/eva.12286
Yen PS, Failloux AB. A Review: Wolbachia-based population replacement for mosquito control shares common points with genetically modified control approaches. Pathogens. 2020 May 22;9(5):404. doi: https://dx.doi.org/10.3390/pathogens9050404
Armbruster P, Damsky WE, Giordano R, Birungi J, Munstermann L, Conn J. Infection of New- and Old-World Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: Implications for host mitochondrial DNA evolution. J Med Entomol. 2003 May;40(3):356-360. doi: https://dx.doi.org/10.1603/0022-2585-40.3.356
Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA et al. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop. 2014 Apr;132 Suppl:S150-163. doi: https://dx.doi.org/10.1016/j.actatropica.2013.11.004
Zhou W, Rousset F, O’Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998 Mar 22;265(1395):509-515. doi: https://dx.doi.org/10.1098/rspb.1998.0324
Kaur R, Shropshire JD, Cross, KL, Leigh B, Mansueto AJ, Stewart V et al. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe. 2021 Jun 9;29(6):879-893. doi: https://dx.doi.org/10.1016/j.chom.2021.03.006
Calvitti M, Moretti R, Lampazzi E, Bellini R, Dobson SL. Characterization of a new Aedes albopictus (Diptera: Culicidae)-Wolbachia pipientis (Rickettsiales: Rickettsiaceae) symbiotic association generated by artificial transfer of the wPip strain from Culex pipiens (Diptera: Culicidae). J Med Entomol. 2010 Mar;47(2):179-187. doi: https://dx.doi.org/10.1603/me09140
Caputo B, Moretti R, Manica M, Serini P, Lampazzi E, Bonanni M et al. A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area. Pest Manag Sci. 2020 Apr;76(4):1324-1332. doi: https://dx.doi.org/10.1002/ps.5643
Ahmad NA, Vythilingam I, Lim YAL, Zabari NZAM, Lee HL. Detection of Wolbachia in Aedes albopictus and their effects on chikungunya virus. Am J Trop Med Hyg. 2017 Jan 11;96(1):148-156. doi: https://dx.doi.org/10.4269/ajtmh.16-0516
Schaffner F, Angel G, Geoffroy B, Hervy JO, Rhaeim A. The mosquitoes of Europe/Les moustiques d’Europe. An identification and training programme/Logiciel d’identification et d’enseignement. Didactiques. Montpellier:IRD Editions & EID Méditerranée. 2001.
Carvajal TM, Hashimoto K, Harnandika RK, Amalin DM, Watanabe K. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasit Vectors. 2019 Jul 24;12(1):361. doi: https://dx.doi.org/10.1186/s13071-019-3629-y
Wu Y, Zheng X, Zhang M, He A, Li Z, Zhan X. Cloning and functional expression of Rh50-like glycoprotein, a putative ammonia channel, in Aedes albopictus mosquitoes. J Insect Physiol. 2010 Nov;56(11):1599-610. doi: https://dx.doi.org/10.1016/j.jinsphys.2010.05.021
Staden R, Beal KF, Bonfield JK. The Staden package, 1998. Methods Mol Biol. 2000;132:115-30. doi: https://dx.doi.org/10.1385/1-59259-192-2:115
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403-410. doi: https://dx.doi.org/10.1016/S0022-2836(05)80360-2
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027. doi: https://dx.doi.org/10.1093/molbev/msab120
Tsai KH, Lien JC, Huang CG, Wu WJ, Chen WJ. Molecular (Sub)grouping of endosymbiont Wolbachia Infection among mosquitoes of Taiwan. J Med Entomol. 2004 Jul;41(4):677-683. doi: https://dx.doi.org/10.1603/0022-2585-41.4.677
Mavingui P, Moro CV, Tran-Van V, Wisniewski-Dyé F, Raquin V, Minard G et al. Whole-genome sequence of Wolbachia strain wAlbB, an endosymbiont of tiger mosquito vector Aedes albopictus. J Bacteriol. 2012 Apr;194(7):1840. doi: https://dx.doi.org/10.1128/JB.00036-12
Braig HR, Zhou W, Dobson SL, O’Neill SL. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol. 1998 May;180(9):2373-2378. doi: https://dx.doi.org/10.1128/jb.180.9.2373-2378.1998
Noda H, Miyoshi T, Zhang Q, Watanabe K, Deng K, Hoshizaki S. Wolbachia infection shared among planthoppers (Homoptera: Delphacidae) and their endoparasite (Strepsiptera: Elenchidae): a probable case of interspecies transmission. Mol Ecol. 2001 Aug;10(8):2101-2106. doi: https://dx.doi.org/10.1046/j.0962-1083.2001.01334.Xx
Kittayapong P, Jamnongluk W, Thipaksorn A, Milne JR, Sindhusake C. Wolbachia infection complexity among insects in the tropical rice-field community. Wolbachia infection complexity among insects in the tropical rice-field community. doi: https://dx.doi.org/10.1046/j.1365-294X.2003.01793.x
Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009 Dec;11(14-15):1177-1185. doi: https://dx.doi.org/10.1016/j.micinf.2009.05.005
Calvitti M, Moretti R, Skidmore AR, Dobson SL. Wolbachia strain wPip yields a pattern of cytoplasmic incompatibility enhancing a Wolbachia-based suppression strategy against the disease vector Aedes albopictus. Parasit Vectors. 2012 Nov 12;5:254. doi: https://dx.doi.org/10.1186/1756-3305-5-254
Moretti R, Calvitti M. Male mating performance and cytoplasmic incompatibility in a wPip Wolbachia trans-infected line of Aedes albopictus (Stegomyia albopicta). Med Vet Entomol. 2013 Dec;27(4):377-386. doi: https://dx.doi.org/10.1111/j.1365-2915.2012.01061.x
Tortosa P, Charlat S, Labbé P, Dehecq JS, Barré H, Weill M. Wolbachia age-sex-specific density in Aedes albopictus: A host evolutionary response to cytoplasmic incompatibility? PLoS One. 2010 Mar 16;5(3):e9700. doi: https://dx.doi.org/10.1371/journal.pone.0009700
Hu Y, Xi Z, Liu X, Wang J, Guo Y, Ren D et al. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasit Vectors. 2020 Jan 14;13(1):28. doi: https://dx.doi.org/10.1186/S13071-020-3899-4
Zhang D, Zhan X, Wu X, Yang X, Liang G, Zheng Z et al. A field survey for Wolbchia and phage WO infections of Aedes albopictus in Guangzhou City, China. Parasitol Res. 2014 Jan;113(1):399-404. doi: https://dx.doi.org/10.1007/S00436-013-3668-9
Kittayapong P, Baimai V, O’Neill SL. Field prevalence of Wolbachia in the mosquito vector Aedes albopictus. Am J Trop Med Hyg. 2002 Jan;66(1):108-111. doi: https://dx.doi.org/10.4269/ajtmh.2002.66.108
Park CH, Lim HW, Kim HW, Lee WG, Roh JY, Park MY, Shin EH. High prevalence of Wolbachia infection in Korean populations of Aedes albopictus (Diptera: Culicidae). J. Asia. Pac. Entomol. 2016 March; 19(1):191-194. doi: https://dx.doi.org/10.1016/j.aspen.2015.12.014
Anderson M, Rustin R, Eremeeva M. Pilot survey of mosquitoes (Diptera: Culicidae) from southeastern Georgia, USA for Wolbachia and Rickettsia felis (Rickettsiales: Rickettsiaceae). Vector Borne Dis. 2019 Apr-Jun;56(2):92-97. doi: https://dx.doi.org/10.4103/0972-9062.263714
De Albuquerque AL, Magalhães T, Ayres CFJ. High prevalence and lack of diversity of Wolbachia pipientis in Aedes albopictus populations from Northeast Brazil. Mem Inst Oswaldo Cruz. 2011 Sep;106(6):773-776. doi: https://dx.doi.org/10.1590/S0074-02762011000600021
Torres-Monzón JA, Casas-Martínez M, López-Ordóñez T. Infection of Aedes mosquitoes by native Wolbachia in urban cemeteries of Southern Mexico. Salud Publica Mex. 2020 Jul-Aug;62(4):447-449. doi: https://dx.doi.org/10.21149/10163
Minard G, Tran FH, Van VT, Goubert C, Bellet C, Lambert G et al. French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives. Front Microbiol. 2015 Sep 22;6:970. doi: https://dx.doi.org/10.3389/fmicb.2015.00970
Maimusa HA, Ahmad AH, Kassim NFA, Rahim J. Age-Stage, Two-sex life table characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia. J Am Mosq Control Assoc. 2016 Mar;32(1):1-11. doi: https://dx.doi.org/10.2987/moco-32-01-1-11.1
Calvitti M, Moretti R, Porretta D, Bellini R, Urbanelli S. Effects on male fitness of removing Wolbachia infections from the mosquito Aedes albopictus. Med Vet Entomol. 2009 Jun;23(2):132-140. doi: https://dx.doi.org/10.1111/J.1365-2915.2008.00791.x
Regulation (EU) Nº 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. [consultado 1 junio 2022]. Disponible en: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32012R0528
Commission Implementing Decision (EU) 2018/1623 of 29 October 2018 pursuant to Article 3(3) of Regulation (EU) Nº 528/2012 of the European Parliament and of the Council on mosquitoes non-naturally infected with Wolbachia used for vector control purposes. [consultado 1 junio 2022]. Disponible en: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.271.01.0030.01.ENG&toc=OJ%3AL%3A2018%3A271%3ATOC
Published
Versions
- 2023-03-02 (2)
- 2023-03-16 (1)
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Rubén Bueno-Marí, Rebeca Domínguez-Santos, María Trelis, Emilio Garrote-Sánchez, María Cholvi, Fermín Quero de Lera, Messaoud Khoubbane, Antonio Marcilla, Rosario Gil
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato.
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia.
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Avisos:
No tiene que cumplir con la licencia para elementos del material en el dominio público o cuando su uso esté permitido por una excepción o limitación aplicable.
No se dan garantías. La licencia podría no darle todos los permisos que necesita para el uso que tenga previsto. Por ejemplo, otros derechos como publicidad, privacidad, o derechos morales pueden limitar la forma en que utilice el material.