Cribado neonatal genómico. Perspectiva de la Comisión de Ética de la Asociación Española de Genética Humana. Parte I: las tecnologías de secuenciación masiva (NGS) y su aplicación al cribado neonatal. Desafíos y oportunidades

e202202012

Autores/as

  • Teresa Pàmpols Ros Sección de errores congénitos del metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínico de Barcelona. Barcelona. España. / Comisión de Ética de la Asociación Española de Genética Humana (AEGH). España.
  • Antonio Pérez Aytés Grupo de Investigación en Perinatología. Instituto de Investigación Sanitaria. Hospital La Fe. Valencia. España. / Comisión de Ética de la Asociación Española de Genética Humana (AEGH). España.
  • José Miguel García Sagredo Facultad de Medicina. Universidad de Alcalá. Alcalá de Henares (Madrid). España. / Comisión de Ética de la Asociación Española de Genética Humana (AEGH). España.
  • Aránzazu Díaz de Bustamante Unidad de Genética. Hospital Universitario de Móstoles. Móstoles (Madrid). España. / Comisión de Ética de la Asociación Española de Genética Humana (AEGH). España.
  • Ignacio Blanco Guillermo Hospital Universitario Germans Trias i Pujol. Badalona (Barcelona). España. / Comisión de Ética de la Asociación Española de Genética Humana (AEGH). España.

Palabras clave:

Cribado neonatal, Cribado neonatal genómico, Secuenciación del recién nacido, Cribado genómico, Cribado genético, Tecnologías de secuenciación masiva, Secuenciación del genoma, Secuenciación del exoma, Salud Pública, Salud Pública genómica.

Resumen

En 2003, cuando finalizó el Proyecto Genoma Humano, surgió la idea de secuenciar el genoma a todos los recién nacidos, archivarlo en la historia clínica y usarlo a lo largo de toda la vida para manejar riesgos de enfermedades y respuesta a medicamentos. Dieciocho años más tarde, las promesas de la medicina genómica y el extraordinario abaratamiento de las tecnologías secuenciadoras, siguen alimentando este sueño que todavía plantea grandes desafíos prácticos, éticos y sociales y la secuenciación genómica se presenta como el próximo gran cambio histórico en los programas de cribado neonatal.

En el presente artículo, se analizan los retos y oportunidades de las tecnologías secuenciadoras de nueva generación, sus costos reales, la problemática inherente a la gestión, almacenamiento y protección de la enorme cantidad de datos genómicos que generan y finalmente, en base a las conclusiones de investigaciones recientes, se considera el potencial y limitaciones de su aplicación en dos escenarios, el recién nacido enfermo con finalidades diagnósticas y el recién nacido sano, asintomático, con finalidades de salud pública(programas de cribado neonatal). En una segunda parte de este artículo se tendrán en cuenta los aspectos éticos, legales y sociales (AELS).

El objetivo final es contribuir al debate científico, profesional, ético y social, promoviendo que la secuenciación genómica en el recién nacido no sea usada indiscriminadamente constituyendo un riesgo, sino que bien empleada sea una aliada en la promoción de la salud y prevención de las consecuencias de las enfermedades genéticas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Department of Health. Our inheritance our future. Realizing the potential of genetics in the NHS. June 2003.

Francis S Collins. The language of life. The DNA and the revolution in personalized medicine. 2010.

Alkmaya FS. A genetic revolution in rare-disease medicine. Nature 2021; 590: 218-219.

Saunders CJ, et al. Rapid Whole Genome sequencing for genetic disease diagnostic in neonatal intensive care units. 2012 Science Translational Medicine; 154(4): 154-155.

Johnston J, Lantos JD, Goldenberg A, Chen F, Parens E, Koenig BA, and members of the NSIGHT Ethics and Policy Advisory Board. Sequencing newborns: A call for nuanced use of genomic technologies. In The ethics of sequencing newborns: Recommendations and Reflections, especial report. Hastings Center Report48, nº 4 (2018): S2+ [20 pages]. doi: 10.1002/hast.874

Grosse S.D, Kalman L, Khoury MJ. Evaluation of the Validity and utility of Genetic testing for Rare Diseases. En Rare disease epidemiology. En Posada de la Paz M, Groft SC (eds), Rare disease epidemiology. Advances in Experimental Medicine and Biology 686. Springer 2010. Pp 115-121.

ACCE Model Process for Evaluating Genetic Tests. http://www.cdc.gov/genomics gtesting/acce

Petrikin JE, Cakici JA, Clark MM et al. The NSIGHT 1-randomized controlled trial: rapid whole-genome sequencing for accelerated etiologic diagnosis in critically ill infants. NPJ Genomic Medicine 2018; 3:6; doi: 10.1038/541525-018-0045-8

Liu Z, Zhu l, Roberts R, Tong W. Toward clinical implementation of next-generation sequencing-based genetic testing in rare diseases: where are we? Trends in Genetics 2019; 35 (11): 852-867.

Holm IA, Yu TW, Joffe S. From sequence data to returnable results: Ethical issues in variant calling and interpretation. Genet Test Mol Biomarkers 2017, 21(3): 178-183.

Murray M, Giovani MA, Doyle DL, Harrison SM et al and the American College of Medical Genetics and Genomics board of directors. DNA-based screening and population health: a point to consider statement for programs and sponsoring organizations from the American College of Medical Genetics and Genomics (ACMC). Genetics in medicine 2021. https://doi.org/10.1038/s 41436-020-01082-w

Luheshi L, Raza S. Clinical whole genome analysis: delivering right diagnosis. PHG foundation January 2014

Peña-Chilet M, Roldán G Pérez Florido et al. CSVS; a crowd sourcing database of the Spanish population genetic variability. Nucleic Acids Research 2020. doi: 10.1093/nar/gkaa794

Presidential Commission for the Study of Bioethical Issues. Anticipate and communicate. Ethical management of incidental and secondary findings in the Clinical, Research and Direct -to-Consumer Contexts. December 2013.

PHG foundation. Making science work for health. Managing incidental and pertinent findings from whole genome sequencing in the 100.000 genomes project. A discussion paper from the PHG foundation. April 2013.

Hehir-Kwa JY, Claustres M, Hastings RJ et al. Towards an european consensus for reporting incidental findings during clinical NGS testing. Eur J Hum Genet. 2015; 23: 1601-1606.

Holm IA. Pediatric issues in return of results and incidental findings: weighing autonomy and best interest. Genetic testing and molecular biomarkers 2017: 21(3), 155-1587.

CNAG-CRG (Centro Nacional de Secuenciación Genómica-Centro de Regulación Genómica). Newsletter 15 de enero de 2021.

Fikes B. New machines can sequence human genome in one hour, Illumina anounces. The San Diego Union Tribune. 2017 http://www.sandiegouniontribune.com/bussines/biotech/sd-me-illumina-novaseq-20170109-story.html

Ligtbody G, Haberland V, Browne L et al. Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Briefings in Bioinformatics. 2019; 20(5): 1795-1811.

Hanket G, Vinck I, Thiry N. The use of whole genome sequencing in clinical practice: challenges and organizational considerations for Belgium. Health Services Research (HSR) Brussels. Belgian Health Knowledge Centre KCE Reports 300.D/2018//10.273/25.

Van Ninwegen KJM, van Soes AA, Veltman JA et al Is the $100 genome as near as we think? A cost analysis of next generation sequencing. ClinChem 2016; 62(11) 1458-1464.

The budged impact and cost-effectiveness of introducing whole exome sequencing-based virtual gene panel test into routine clinical genetics. PHG Foundation 2017 ISBN 978-1-907198-25-0).

Van Campen JC, Sollars ESA, Thomas RC et al. Next generation sequencing in newborn screening in the United Kingdom National Health Service. Int J Neonatal Screen. 2019; 5: 40. doi: 10.339/ijns 5040040

Valcarcel Nazco C, García Pérez L, Linertová R, Castilla I, Vallejo Torres l, Ramos Goñi JM, Labrador Cañadas V, Couce ML, Espada Sáenz-Torres M, Dulín Iñíguez E, Posada M, Imaz Iglesias I, Serrano Aguilar P. Métodos para la evaluación económica de programas de cribado neonatal. RevEsp de Salud Pública. 2021; 95: 26 de enero e 202101009.

Grupo de trabajo en gestión de datos genómicos. Gestión de datos genómicos con finalidad clínica y de investigación. Instituto Roche 2015.

Amazon, Google race to get your DNA in the cloud. Medscape. Jun 05, 2015.

Krimm N, Hoffman N. Practical estimation of cloud storage costs for clinical genomic data. Practical Laboratory Medicine 2020; 21, e00168.

Erlich Y, Shor T, Peter II. Identity inference of genomic data using long range familial searches. Science 2018; 362:690-694.

Al-Issa Y, Ottom MA, Tamrawi A, eHealth Cloud Security Challenges: A survey. Journal of Health care engineering 2019: 1-17. Article ID 7516035. https://doi.org/10.115572019/7516035

Howard CH, Knoppers BM, Cornel MC. Clayton EW, Sénécal K, Borry P, endorsed by the European Society of Human Genetics; the P3G International Pediatric Platform; the Human Genome Organization; and the PHG Foundation. Whole-genome sequencing in newborn screening. A statement on the continued importance of targeted approaches in newborn screening programs. Eur J Hum Genet 2015; 23: 1593-1600.

Dove ES, Joly Y, Tassé AM, Public Population project in Genomics and society (P3G) International Steering Committee, International Cancer Genome Consortium (ICGC) Ethics and policy Committee and Knoppers BM. Genomic cloud computing: legal and ethical points to consider. Eur J Hum Genet. 2015; 23: 1271-1278.

Berg JS, Agrawal PB, Bayley DB et al. Newborn screening in genomic medicine and public health. Pediatrics 2017; 139(2): e20162252.

Roman TS, Crowley Sb, Rocha MI et al. Genomic sequencing for newborn screening. Results of the NC NEXUS project. Med Rxiv preprint doi. https//doi.org/10/1101/2020.02.26.20024679. Posted february 29, 2020.

Holm IA, Agrawal PB, Ceyhan-Birsoy O et al. The BabySeq Project: implementing genomic sequencing in newborns. BMC pediatrics 2018; 18: 225. https//doi.org10.1186/s12887-018-1200-1

Ceyhan-Birsoy O, Murry JB, Machini K et al. Interpretation of genomic sequencing results in healthy and ill newborns: Results from de BabySeq project. Am J Hum Genet 2019; 104: 76-93.

Ceyhan-Birsoy JB; Machini K, Lebo MS et al. A curated gene list for reporting results of newborn genomic sequencing. Genet Med 2017; 19(7): 809-818.

Milko LV, O’Daniel S DeCristo DM et al. An age based framework for evaluating genome-scale sequencing results in newborn screening. J Pediatr 2019; 209: 68-76.

Adkihari AN, Gallagher R; Wang Y et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nature Medicine 2020; 26: 1392-1397.

Kingsmore SF, Cakici JA, Clark MM et al. A randomized controlled trial of the analytic and diagnostic performance of singleton and trio rapid genome and exome sequencing. The Am J Hum Genet 2019; 105: 719-733.

Wilson JM, Jungner G. Principles and practice of screening for disease. Public health papers nº 34. World Health Organization. Geneva. 1968.

Berg JS, Foreman AK, O’Daniel, JM, Booker JK, Boshe L, Carey T et al. A semiquantitative method for

evaluating clinical actionability of incidental and secondary findings from genome scale sequencing. Genet Med. 2016; 18. A67-475.

Strande NT, Riggs Er, Buchanan AH, Ceyhan-Birsoy O, DiStefano m, Dwigt SS et al. Evaluating the clinical validity of gene-disease association. An evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017; 100: 895-906.

Navarrete R, Leal F, Vega AI, Morais-López A, García-Silva MT et al. Value of genetic analysis for confirming inborn errors of metabolism detected by the Spanish neonatal screening program. Eur J Hum Genet. 2019; 27: 556-562.

Palau F. Medicina genómica y salud pública en el recién nacido: ampliación del cribado neonatal a otras patologías genéticas raras. En 50 años de cribado neonatal: como afrontamos el futuro. Coord Belén Pérez González. Fundación Ramón Areces 2021, págs. 77-78. (Accesible en www.fundacionareces.es).

Descargas

Publicado

04-02-2022

Cómo citar

1.
Pàmpols Ros T, Pérez Aytés A, García Sagredo JM, Díaz de Bustamante A, Blanco Guillermo I. Cribado neonatal genómico. Perspectiva de la Comisión de Ética de la Asociación Española de Genética Humana. Parte I: las tecnologías de secuenciación masiva (NGS) y su aplicación al cribado neonatal. Desafíos y oportunidades: e202202012. Rev Esp Salud Pública [Internet]. 4 de febrero de 2022 [citado 18 de mayo de 2024];96:20 páginas. Disponible en: https://ojs.sanidad.gob.es/index.php/resp/article/view/270

Número

Sección

Colaboraciones especiales

Categorías

Artículos más leídos del mismo autor/a