Impacto de la inclusión de pruebas de segundo nivel en el programa de cribado neonatal de Cataluña y en otros programas internacionales
e202012158
Palabras clave:
Cribado neonatal, Marcador de segundo nivel (2TT), Espectrometría de masas, Immunoanálisis, Enfermedades metabólicas hereditarias, Fibrosis quística, Enfermedades lisosomales, X-ALD, Hiperplasia suprarrenal congénita, Inmunodeficiencia combinada graveResumen
Fundamentos: Los programas de cribado neonatal (PCN) han experimentado un gran avance cualitativo debido a la implementación de la espectrometría de masas en tándem. Sin embargo, las pruebas utilizadas dan lugar a falsos positivos (FP) generando una excesiva solicitud de segundas muestras con la consiguiente ansiedad de las familias. Con el fin de evitar este problema diversos programas han desarrollado pruebas de segundo nivel (2TT).
Métodos: En este artículo se presenta nuestra experiencia en la implementación de 2TT en el PCN de Cataluña, así como en otros programas internacionales.
Resultados: Desde el año 2004 hasta la actualidad se han desarrollado pruebas de 2TT para más de 30 enfermedades. La utilización de 2TT ayuda a disminuir la tasa de FP y aumentar el valor predictivo positivo (VPP). En el PCN de Cataluña, la implementación de 2TT para la detección de acidemias metilmalónicas y propiónica, homocistinurias, jarabe de arce y citrulinemia, ha conseguido aumentar el VPP a un 95% y disminuir la tasa de FP a menos del 0,01%. En la fibrosis quística la aplicación de 2TT aumenta ligeramente el VPP pero con disminución significativa de la solicitud de segundas muestras y de los casos referidos a las unidades clínicas.
Conclusiones: La introducción de los 2TT en los PCN permite reducir considerablemente los FP, disminuye el número de muestras solicitadas, así como la ansiedad y el estrés de las familias, a la vez que se reducen los costes hospitalarios y se aumenta el VPP, mejorando notablemente la eficiencia de los PCN.
Descargas
Citas
Millington DS, Kodo N, Terada N, Roe D, Chace DH. The analysis of diagnostic markers of genetic disorders in human blood and urine using tandem mass spectrometry with liquid secondary ion mass spectrometry. Int J Mass Spectrom Ion Process. 1991; 111:211–228.
Chace DH, Adam BW, Smith SJ, Alexander JR, Hillman SL, Hannon WH. Validation of accuracy-based amino acid reference materials in dried-blood spots by tandem mass spectrometry for newborn screening assays. Clin Chem. 1999; 45(8 Pt 1):1269-77.
Rinaldo P, Zafari S, Tortorelli S, Matern D. Making the case for objective performance metrics in newborn screening by tandem mass spectrometry. Ment Retard Dev Disabil Res Rev. 2006;12:255–261.
GarciaVilloria Judit, Pajares S, López RM, Marin JL, Ribes A. Neonatal Screening for Inherited Metabolic Diseases in 2016. Seminars in Pediatric Neurology. 2016; 23 (4): 257-272.
Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004-2007). J Inherit Metab Dis. 2007;30(4):585-592.
La Marca G, Malvagia S, Pasquini E, Innocenti M, Donati MA, Zammarchi E. Rapid 2nd-tier test for measurement of 3-OH-propionic and methylmalonic acids on dried blood spots: reducing the false-positive rate for propionylcarnitine during expanded newborn screening by liquid chromatography-tandem mass spectrometry. Clin Chem. 2007; 53(7):1364-1369.
Turgeon CT, Magera MJ, Cuthbert CD, Loken PR, Gavrilov DK, Tortorelli S et al. Determination of total homocysteine, methylmalonic acid, and 2-methylcitric acid in dried blood spots by tandem mass spectrometry. Clin Chem. 2010; 56(11):1686-95.
Shigematsu Y, Hata I, Tajima G. Useful second-tier tests in expanded newborn screening of isovaleric acidemia and methylmalonic aciduria. J Inherit Metab Dis. 2010; 33(Suppl 2):S283-8.
Al-Dirbashi OY, McIntosh N, McRoberts C, Fisher L, Rashed MS, Makhseed N et al. Analysis of methylcitrate in dried blood spots by liquid chromatography-tandem mass spectrometry. JIMD Rep. 2014;16:65-73.
Monostori P, Klinke G, Richter S, Baráth A , Fingerhut R, Baumgartner MR et al. Simultaneous determination of 3-hydroxypropionic acid, methylmalonic acid and methylcitric acid in dried blood spots: Second-tier LC-MS/MS assay for newborn screening of propionic acidemia, methylmalonic acidemias and combined remethylation disorders. PLoS One. 2017;12(9):e0184897.
Forni S, Fu X, Palmer SE, Sweetman L. Rapid determination of C4-acylcarnitine and C5-acylcarnitine isomers in plasma and dried blood spots by UPLC-MS/MS as a second tier test following flow-injection MS/MS acylcarnitine profile analysis. Mol Genet Metab. 2010;101(1):25-32.
Adhikari AN, Currier RJ, Tang H, Turgeon CT, Nussbaum RL, Srinivasan R et al. Genomic Analysis of Historical Cases with Positive Newborn Screens for Short-Chain Acyl-CoA Dehydrogenase Deficiency Shows That a Validated Second-Tier Biochemical Test Can Replace Future Sequencing. Int J Neonatal Screen. 2020; 6(2): 41.
Abendur JE, Chamoles NA., Guinle AE, Schenone AB, Fuertes AN. Diagnosis of isovaleric acidaemia by tandem mass spectrometry: false positive result due to pivaloylcarnitine in a newborn screening program. J Inherit Metab Dis. 1998; 21(6): 624–630.
Boemer F, Schoos R, de Halleux V, Kalenga M, Debray FG. Surprising causes of C5-carnitine false positive results in newborn screening. Mol Genet Metab. 2014; 111(1):52-4.
Sinclair GB, Ester M, Horvath G, van Karnebeek CD, Stockler-Ipsirogu S, Vallance H. Integrated Multianalyte Second-Tier Testing for Newborn Screening for MSUD, IVA, and GAMT Deficiencies. J Inborn Errors Metab Scrren. 2016; 4: 1–7.
Carling RS, Burden D, Hutton I, Randle R, John K, Bonham JR. Introduction of a Simple Second Tier Screening Test for C5 Isobars in Dried Blood Spots: Reducing the False Positive Rate for Isovaleric Acidaemia in Expanded Newborn Screening. JIMD Rep. 2017; 20.
Okun JG, Gan-Schreier H, Ben-Omran T, Schmidt KV, Fang-Hoffmann J, Gramer G et al. Newborn Screening for Vitamin B6 Non-responsive Classical Homocystinuria: Systematical Evaluation of a Two-Tier Strategy. JIMD Rep. 2017; 32: 87–94.
Wang C, Zhu H, Zhang W, Song F, Liu Z, Liu S. Second-tier test for quantification of underivatized amino acids in dry blood spot for metabolic diseases in newborn screening. Amino Acids. 2013;44(2):661-71.
Oglesbee D, Sanders KA, Lacey JM, Magera MJ, Casetta B, Strauss KA et al. Second-tier test for quantification of alloisoleucine and branched-chain amino acids in dried blood spots to improve newborn screening for maple syrup urine disease (MSUD). Clin Chem. 2008; 54(3):542–549.
Alodaib A, Carpenter K, Wiley V, Sim K, Christodoulou J, Wilcken B. An improved ultra performance liquid chromatography-tandem mass spectrometry method for the determination of alloisoleucine and branched chain amino acids in dried blood samples. Ann Clin Biochem. 2011; 48(Pt 5):468-70.
CLIR (Collaborative Laboratory Integrated Reports), https://clir.mayo.edu
Tortorelli S, Eckerman J, Orsini JJ, Stevens C, Hart J, Hall PL et al. Moonlighting newborn screening markers: the incidental discovery of a second-tier test for Pompe disease. Genetics in Medicine. 2018;20(8):840–846.
Minter Baerg MM, Stoway SD, Hart J, Mott L, Peck DS, Nett SL et al. Precision newborn screening for lysosomal disorders. Genet Med. 2018;20(8):847-854.
La Marca G, Malvagia S, Pasquini E, Cavicchi C, Morrone A, Ciani F et al. Newborn screening for tyrosinemia type I: Further evidence that succinylacetone determination on blood spot is essential. JIMD Rep. 2011; 1:107–109.
Santagata S, Di Carlo E, Carducci C, Leuzzi V, Angeloni A, Carducci C. Development of a new UPLC-ESI-MS/MS method for the determination of biopterin and neopterin in dried blood spot. Clin Chim Acta. 2017;466:145-151.
Fujimoto A, Okano Y, Miyagi T, Isshiki G, Oura T. Quantitative Beutler test for newborn mass screening of galactosemia using a fluorometric microplate reader. Clin Chem 2000; 46(6Pt1):806–810.
Jensen UG, Brandt NJ, Christensen E, Skovby F, Nørgaard-Pedersen B, Simonsen H. Neonatal screening for galactosemia by quantitative analysis of hexose monophosphates using tandem mass spectrometry: A retrospective study. Clin Chem. 2001;47(8)1364–1372.
Dobrowolski SF, Banas RA, Suzow JG. Analysis of Common Mutations in the Galactose-1-Phosphate Uridyl Transferase Gene New Assays to Increase the Sensitivity and Specificity of Newborn Screening for Galactosemia. J Mol Diagn. 2003;5(1):42–47.
Ko DH, Jun SH, Park KU, Song SH, Kim JQ, Song J. Newborn screening for galactosemia by a second-tier multiplex enzyme assay using UPLC-MS/MS in dried blood spots. J Inherit Metab Dis. 2011;34(2):409–414.
Ohlsson A, Guthenberg C, von Döbeln U. Galactosemia Screening with Low False-Positive Recall Rate: The Swedish Experience. JIMD Rep. 2012;2:113–117.
Pasquali M, Schwarz E, Jensen M, Yuzyuk T, DeBiase I, Randall H et al. Feasibility of newborn screening for guanidinoacetate methyltransferase (GAMT) deficiency. J Inherit Metab Dis 2014; 37(2):231–236.
Sinclair GB, van Karnebeek CDM, Ester M, Boyd F, Nelson Tanya, Stockler-Ipsiroglu S et al. A three-tier algorithm for guanidinoacetate methyltransferase (GAMT) deficiency newborn screening. Mol Genet Metab. 2016; 118(3):173-7.
Tortorelli. Congreso ESGH; 2017.
Burlina AB, Polo G, Rubert L, Gueraldi D, Cazzorla C, Duro G, et al. Implementation of Second-Tier Tests in Newborn Screening for Lysosomal Disorders in North Eastern Italy. Int J Neonatal Screen. 2019; 5:24.
Kumamoto S, Katafuchi T, Nakamura K, Endo F, Oda E, Okuyama T et al. High frequency of acid alpha-glucosidase pseudodeficiency complicates newborn screening for glycogen storage disease type II in the Japanese population. Mol Genet Metab. 2009;97(3):190–195.
Yang CF, Liu HC, Hsu TR, Tsai FC, Chiang SF, Chiang CC et al. A large-scale nationwide newborn screening program for Pompe disease in Taiwan: towards effective diagnosis and treatment. Am J Med Genet A. 2014;164A:54–61.
Chiang SC, Hwu WL, Lee NC, Hsu LW, Chien YH. Algorithm for Pompe disease newborn screening: Results from the Taiwan screening program. Molecular Genetics and Metabolism. 2012;106(3): 281-286.
Tang H, Feuchtbaum L, Sciortino S, Matteson J Mathur D, Bishop T, Olney RS. The First Year Experience of Newborn Screening for Pompe Disease in California. Int J Neonatal Screen. 2020;6:9.
Burton BK, Charrow J, Hoganson GE, Darrell W, Tinkle B, Braddock SR et al. Newborn Screening for Pompe Disease in Illinois: Experience with 684,290 Infants. Int J Neonatal Screen. 2020; 6(1):4.
Ruiz-Schultz N, Oakson K, Jones D, Rindler M, Hart K, Rohrwasser A. Targeted Second-Tier Confirmatory Next Generation Sequencing Newborn Screening Pipeline. In Poster Abstracts of the Newborn Screening & Genetic Testing Symposium; Chicago, IL, USA; 2019.7–10 April 2.
Smith LD, Bainbridge MN, Parad, RB, Bhattacharjee A. Second Tier Molecular Genetic Testing in Newborn Screening for Pompe Disease: Landscape and Challenges. Int J Neonatal Screen. 2020;6(2):32.
Orsini J J, Kay DM, Saavedra-Matiz CA, Wenger DA, Duffner PK, Erbe RW et al. Newborn screening for Krabbe disease in New York State: the first eight years’ experience. Genetics in Medicine. 2016;18(3):239–248.
Hopkins PV. slide 10 of https://www.aphl.org/conferences/proceedings/Documents/2016/NBS-Genetic-Testing-ymposium/05Hopkins.pdf. Accessed1 July 2016.
Chuang WL, Pacheco J, Zhang XK, Martin MM, Biski CK, Keutzer JM et al. Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for Krabbe disease. Clinica Chimica Acta. 2013;419:73–76.
Escolar ML, Kiely BT, Shawgo E, Hong X, Gelb MH, Orsini JJ et al. Psychosine, a marker of Krabbe phenotype and treatment effect. Mol Genet Metab. 2017;121(3):271-278.
Turgeon CT, Orsini JJ, Sanders KA, Magera MJ, Langan TJ, Escolar ML et al. Measurement of psychosine in dried blood spots — a possible improvement to newborn screening programs for Krabbe disease. J Inherit Metab Dis. 2015;38(5):923–929.
Johnson B, Mascher H, Mascher D, Legnini E, Hung CY, Dajnoki A. Analysis of Lyso-Globotriaosylsphingosine in Dried Blood Spots. Ann Lab Med. 2013;33(4):274-278.
Chien YH, Bodamer OA, Chiang SC, Mascher H, Hung C, Hwu WL. Lyso-globotriaosylsphingosine (lyso-Gb3) levels in neonates and adults with the Fabry disease later-onset GLA IVS4+919G>A mutation. J Inherit Metab Dis. 2013;36(5):881–885.
Spada M, Kasper D, Pagliardini V, Biamino E, Giachero S, Porta F. Metabolic progression to clinical phenotype in classic Fabry disease. Italian Journal of Pediatrics. 2017;43(1):1.
Moser AB, Jones RO, Hubbard WC, Tortorelli S, Orsini JJ, Caggana M et al. Newborn Screening for X-Linked Adrenoleukodystrophy. Int J Neonatal Screen. 2016; 2(4).
Barendsen RW, Dijkstra IME, Wouter F. Visser, Alders M, Bliek J et al. Adrenoleukodystrophy Newborn Screening in the Netherlands (SCAN Study): The X-Factor. Front Cell Dev Biol. 2020;8:499.
Sarles J, Berthézène P, Le Louarn C, Somma C, Perini JM, Catheline M et al. Combining immunoreactive trypsinogen and pancreatitis-associated protein assays, a method of newborn screening for cystic fibrosis that avoids DNA analysis. J Pediatr. 2005;147(3):302-5
Sarles J, Giorgi R, Berthézène P, Munck A, Cheillan D, Dagorn JC et al. Neonatal screening for cystic fibrosis: comparing the performances of IRT/DNA and IRT/PAP. J Cyst Fibros. 2014; 13(4):384-90.
Seror V, Cao C, Roussey M, Giorgi R. PAP assays in newborn screening for cystic fibrosis: a population-based cost-effectiveness study. J Med Screen. 2016; 23(2):62-9.
Munck A, Delmas D, Audrézet MP, Lemonnier L, Cheillan D, Roussey M. Optimization of the French cystic fibrosis newborn screening programme by a centralized tracking process. J Med Screen. 2018; 25 (1): 6–12.
Sommerburg O, Lindner M, Muckenthaler M, Kholmueller D, Lieble S, Feneberg R et al. Initial evaluation of a biochemical cystic fibrosis newborn screening by sequential analysis of immunoreactive trypsinogen and pancreatitis-associated protein (IRT/PAP) as a strategy that does not involve DNA testing in a Northern European population. J Inherit Metab Dis. 2010; 33: S263–S271.
Sommerburg O, Krulisova V, Hammermann J, Lindner M, Stahl M, Muckenthaler M et al. Comparison of different IRT-PAP protocols to screen newborns for cystic fibrosis in three central European populations. J Cyst Fibros. 2014; 13: 15–23.
Sommerburg O, Hammermann J, Lindner M, Stahl M, Muckenthaler M, Kholmueller D et al. Five years of experience with biochemical cystic fibrosis newborn screening based on IRT/PAP in Germany. Pediatr Pulmonol. 2015; 50: 655–664
Sommerburg O, Stahl M, Hammermann J, Okun JG, Kulozik A, Hoffmann G et al. Newborn Screening on Cystic Fibrosis in Germany: Comparison of the new Screening Protocol with an Alternative Protocol. Klin Padiatr. 2017; 229(2):59-66.
Weidler S, Stopsack KH, Hammermann J, Sommerburg O, Mall MA, Hoffmann GF. A product of immunoreactive trypsinogen andpancreatitis-associated protein as second-tier strategy in cystic fibrosis newborn screening. J Cyst Fibros. 2016; (15):752–758
Schmidt M, Werbrouck A, Verhaeghe N, De Wachter E, Simoens S, Lieven Annemans L et al. A model-based economic evaluation of fournewborn screening strategies for cystic fibrosis in Flanders, Belgium. Acta Clin Belg. 2020;75(3):212-220
Cornel MC, Gille JJP, Loeber JG, Vernooij-van Langen AMM, Dankert-Roelse J, Bolhuis PA. Improving test properties for neonatal cystic fibrosis screening in the Netherlands before the nationwide start by May 1st 2011. J Inherit Metab Dis. 2012;35(4):635-40.
Dankert-Roelse JE, Bouva MJ, Jakobs BS, Janssens HM, de Winter-de KM Groot, Yvonne Schönbeck Y et al. Newborn blood spot screening for cystic fibrosis with a four-step screening strategy in the Netherlands. J Cyst Fibros. 2019;18(1):54-63.
Krulišová V, Balaščaková M, Skalická V, Piskáčaková T, Holubová A, Paderová J et al. Prospective and parallel assessments of cystic fibrosis newborn screening protocols in the Czech Republic: IRT/DNA/IRT versus IRT/PAP and IRT/PAP/DNA. Eur J Pediatr. 2012; 171(8):1223-9.
Marcão A, Barreto C, Pereira L, Guedes Vaz L, Cavaco J, Casimiro A et al. Cystic Fibrosis Newborn Screening in Portugal: PAP Value in Populations with Stringent Rules for Genetic Studies. Int J Neonatal Screen. 2018; 22 (4):1-12.
Sadik I, Pérez de Algaba I Jiménez R, Benito C, Blasco-Alonso J, Caro P et al. Initial Evaluation of Prospective and Parallel Assessments of Cystic Fibrosis Newborn Screening Protocols in Eastern Andalusia: IRT/IRT versus IRT/PAP/IRT. In. J Neonatal Screen. 2019;32 (5): 1-12.
López RM, Argudo A, Pajares S, Delgado G, Flores JE, Ramón E, Badenas C, Gatner S, Cols M, Asensio O, Fernández RM, Ribes A, Marín JL. Análisis de estrategias con la proteína asociada a pancreatitis como prueba de segundo nivel para la detección de fibrosis quística en el Programa de Cribado Neonatal de Cataluña. XII Congreso Nacional de Errores Congénitos del Metabolismo, Las Palmas de Gran Canaria 18-20 de octubre de 2017.
López RM, Argudo A, Pajares S, Delgado G, Flores JE, Ramón E, Badenas C, Gatner S, Cols M, Asensio O, Fernández RM, Ribes A, Marín JL. Analysis of strategies with immunoreactive trypsin and pancreatitis-associated protein for the detection of cystic fibrosis. Application in the Catalonia Neonatal Screening Program. 11th ISNS European Regional Meeting, Bratislava 14-17 octubre 2018.
Schwarz E, Liu A, Randall H, Haslip C, Keune F, Murray M et al. Use of Steroid Profiling by UPLC-MS/MS as a Second Tier Test in Newborn Screening for Congenital Adrenal Hyperplasia: The Utah Experience. Pediatric Research. 2009;66(2):230–235.
Seo JY, Park HD, Kim JW, Oh HJ, Yang JS, Chang YS et al. Steroid profiling for congenital adrenal hyperplasia by tandem mass spectrometry as a second-tier test reduces follow-up burdens in a tertiary care hospital: a retrospective and prospective evaluation. J Perinat Med. 2014; 42(1):121-7.
Peter M, Janzen N, Sander S, Korsch E, Riepe FG, Sander J. A case of 11beta-hydroxylase deficiency detected in a newborn screening program by second-tier LC-MS/MS. Horm Res 2008; 69(4):253–256.
Monostori P, Szabó P, Marginean O, Bereczki C, Karg E. Concurrent Confirmation and Differential Diagnosis of Congenital Adrenal Hyperplasia from Dried Blood Spots: Application of a Second-Tier LC-MS/MS Assay in a Cross-Border Cooperation for Newborn Screening. Horm Res Paediatr. 2015;84(5):311-8.
Kösel S, Burggraf S, Fingerhut R, Dörr HG, Roscher AA, Olgemöller B. Rapid Second-Tier Molecular Genetic Analysis for Congenital Adrenal Hyperplasia Attributable to Steroid 21-Hydroxylase Deficiency. Clin Chem. 2005;51(2):298-304.
Kopacek C, Prado MJ, da Silva CMD, de Castro SM, Beltrão LA, Vargas PR et al. Clinical and molecular profile of newborns with confirmed or suspicious congenital adrenal hyperplasia detected after a public screening program implementation. J Pediatr (Rio J). 2019;95(3):282-290.
Azzari C, la Marca G, Resti M. Neonatal screening for severe combined immunodeficiency caused by an adenosine deaminase defect: A reliable and inexpensive method using tandem mass spectrometry. J Allergy Clin Immunol. 2011; 127(6):1394–1399.
La Marca G, Giocaliere E, Malvagia S, Villanelli F, Funghini S, Ombrone D et al. Development and validation of a 2nd tier test for identification of purine nucleoside phosphorylase deficiency patients during expanded newborn screening by liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med. 2016; 54(4):627-632.
Al-Mousa H, Al-Dakheel G, Jabr A, Elbadaoui F, Abouelhoda M, Baig M et al. High Incidence of Severe Combined Immunodeficiency Disease in Saudi Arabia Detected Through Combined T Cell Receptor Excision Circle and Next Generation Sequencing of Newborn Dried Blood Spots. Front Immunol. 2018;9:782.
Strand J, Aftab GK, Christian EH, Lundman E, Berge MC, Trømborg AK et al. Second-Tier Next Generation Sequencing Integrated in Nationwide Newborn Screening Provides Rapid Molecular Diagnostics of Severe Combined Immunodeficiency. Front Immunol. 2020;11:1417.
Bhattacharjee A, Sokolsky T, Wyman SK, Reese MG, Puffenberger E, Strauss K et al. Development of DNA confirmatory and high-risk diagnostic testing for newborns using targeted next-generation DNA sequencing. Genet Med. 2015; 17(5):337-47.
Wang LY, Chen NI, Chen PW, Chiang SC, Hwu WL, Lee NC et al. Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests. BMC Medical Genetics 2013, 14:24.
Fleige T, Burggraf S, Czibere L, Häring J, Glück B, Keitel LM et al. Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis. European Journal of Human Genetics. 2020;28:193–201.
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2020 Sonia Pajares García, Rosa Mª López Galera, Jose Luis Marín Soria, Ana Argudo Ramírez, Jose Manuel González de Aledo-Castillo, Antonia Ribes Rubió, Blanca Prats Viedma, Laia Asso Ministral, Judit García-Villoria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato.
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia.
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Avisos:
No tiene que cumplir con la licencia para elementos del material en el dominio público o cuando su uso esté permitido por una excepción o limitación aplicable.
No se dan garantías. La licencia podría no darle todos los permisos que necesita para el uso que tenga previsto. Por ejemplo, otros derechos como publicidad, privacidad, o derechos morales pueden limitar la forma en que utilice el material.